Sort   by:  
 Page size 
0
This SuperSeries is composed of the following subset Series: GSE16385: Expression data from human macrophages GSE16386: Expression data from human alternatively activated macrophages GSE25088: PPARg and IL-4-induced gene expression data from wild-type and STAT6 knockout mouse bone marrow-derived macr...
ORGANISM(S): Mus musculus 
0
Human CD14 positive monocytes were purified from healthy volunteers’ blood and cultured in vitro for 6 hours. While culturing, macrophages were activated alternatively with interleukin-4 (IL-4 100 ng/ml). Simultaneously, macrophages were also treated with vehicle (DMSO:ethanol) or 1uM synthetic PPARg...
ORGANISM(S): Homo sapiens 
0
C57Bl/6 wild-type and STAT6 KO mice were used to study PPARg and IL-4 signaling. Bone marrow of 3 mice per group was isolated and differentiated to macrophages with M-CSF (20 ng/ml). 20 ng/ml IL-4 was used to induce alternative macrophage activation and 1 uM Rosiglitazone (RSG) was used to activate P...
ORGANISM(S): Mus musculus 
0
Human CD14 positive monocytes were purified from healthy volunteers’ blood and cultured in vitro for 4, 12, 24, 72 hours. While culturing, macrophages were activated alternatively with interleukin-4 (IL-4 100 ng/ml) or classically with interferon-gamma (IFNg 100 ng/ml)+tumor necrosis factor (TNF 50 n...
ORGANISM(S): Homo sapiens 
0
Conditional macrophage-specific PPARg knockout mice were generated on C57Bl/6 background by breeding PPARg fl/- (one allele is floxed, the other is null) and lysozyme Cre transgenic mice. PPARg and IL-4 signaling was analyzed on bone marrow-derived macrophages. Bone marrow of 3 mice per group was iso...
ORGANISM(S): Mus musculus 
0
Conditional macrophage-specific PPARg knockout mice were generated on C57Bl/6 background by breeding PPARg fl/- (one allele is floxed, the other is null) and lysozyme Cre transgenic mice. PPARg and IL-4 signaling was analyzed on bone marrow-derived macrophages. Bone marrow of 4 mice per group was iso...
ORGANISM(S): Mus musculus 
0
Our data indicated that activation of the PPARg nuclear receptor induces a retinoid response in human dendritic cells. In order to assess the contribution of retinoid signaling to the PPARg response we decided to use a combination of pharmacological activators and inhibitors of these pathways. Cells ...
ORGANISM(S): Homo sapiens 
Sort   by:  
 Page size