Project description:5 colorectal cancer (CRC) tissues and 5 paired non-tumor tissues from CRC patients were indirectly compared using a 17K cDNA microarray.
Project description:To identify novel hypermethylated genes in colorectal cancer (CRC) and to test their potential application in CRC early diagnosis, we performed a genome-wide screening of 57,723 CpG dinucleotides covering 4,010 genes in paired DNA samples extracted from 3 fresh frozen CRC tissues and their matching non-tumor adjacent tissues from a cohort of 3 CRC patients undergoing curative surgery using MIRA-based microarray. We also validated candidate hypermethylated genes screened by MIRA-based microarray in independent CRC samples using combined bisulfite restriction analysis. A total of 297 CpG dinucleotides in CRC covering 211 genes were found to be hypermethylated in CRC tissues. From these 211 candidate methylated genes, seven novel methylated genes were picked up for validation and three genes were confirmed to be methylated in cancer samples but not in non-cancer samples.We also compared the methylation levels of these three novel hypermethylated genes with those of Vimentin and SEPT9, well-known hypermethylated genes in CRC, and found that methylated PHOX2B, FGF12 and GAD2 were better than methylated Vimentin and SEPT9 in differentiating CRC cancer tissue from normal tissue. Significant enrichment analysis of GO terms of the hypermethylated genes showed that a high proportion of hypermethylated genes in tumor tissues are involved in regulation of transcription. Paired experiments, colorectal cancer tissue vs. adjacent non-cancer tissue. Biological replicates: 3 cancer replicates, 3 paired non-cancer replicates.
Project description:We determined expression profiles of 667 miRNAs using TaqMan Low Density Arrays (TLDA-TaqMan Array Human MicroRNA Card Set v2.0, Applied Biosystems) in 8 samples of colorectal cancer tissues and 8 samples of paired non-tumoral colonic tissues.
Project description:Genome-wide association studies (GWAS) have identified 19 risk variants associated with colorectal cancer. As most of these risk variants reside outside the coding regions of genes, we conducted cis-expression quantitative trait loci (cis-eQTL) analyses to investigate possible regulatory functions on the expression of neighboring genes. Forty microsatellite stable and CpG island methylator phenotype-negative colorectal tumors and paired adjacent-normal colon tissues were used for genome-wide SNP and gene expression profiling in our cis-eQTL analyses. This submission represents transcriptome component of study.
Project description:5 colorectal cancer (CRC) tissues and 5 paired non-tumor tissues from CRC patients were indirectly compared using a 17K cDNA microarray. The total RNA from each tissue was labeled with Cy5, and the total RNAs from 11 human cell lines were labeled with Cy3 as the reference.
Project description:lncRNAs contributes to the development of colorectal cancer (CRC). Analysis of tumor tissues and adjacent non-tumor tissues from 6 colorectal cancer patients was conducted. Results indicate insight into molecular signature of the tumorigenesis of CRC.
Project description:Cancer tissues and noncancerous adjacent tissues (NATs) with the luminal A subtype (ER- and PR-positive, HER2-negative) were obtained from paired IDC and ILC patients respectively. Label-free quantitative proteomics and phosphoproteomics methods were used to detect differential proteins and the phosphorylation status between 10 paired breast cancer and NATs. Then, the difference in protein expression and its phosphorylation between IDC and ILC subtypes were explored. Meanwhile, the activation of kinases and their substrates was also revealed by Kinase-Substrate Enrichment Analysis (KSEA).