Project description:Wnt signaling and cadherin-mediated adhesion have been implicated in both processes of embryonic development and the progression of carcinomas. Recent experimental studies revealed that Wnt signaling and cadherin-mediated cell adhesion have close crosstalk with each other. A comprehensive model that investigates the dynamic balance of β-catenins in Wnt signaling and cell adhesion will improve our understanding to embryonic development and carcinomas. We constructed a network model to evaluate the dynamic interplay between adhesion and Wnt signaling. The network is decomposed into three interdependent modules: the cell adhesion, the degradation circle and the transcriptional regulation. In the cell adhesion module, we consider the effect of cadherin's lateral clustering. We found adhesion negatively contributes to Wnt signaling through competition for cytoplasmic β-catenins. In the network of degradation circle, we incorporated features from various existing models. Our simulations reproduced the most recent experimental phenomena with semi-quantitative accuracy. Finally, in the transcriptional regulation module, we developed a function selection strategy to analyze the outcomes of genetic feedback loops in modulating the gene expression of Wnt targets. The specific cellular phenomena such as cadherin switch and Axin oscillation were archived and their biological insights were discussed. Our model provides the theoretical basis of how spatial organization regulates the dynamics of cellular signaling pathways. We suggest that cell adhesion affects Wnt signaling in both negative and positive ways. Cadherins can inhibit Wnt signaling not only in a way as a stoichiometric binding partner of β-catenins that sequesters them from signaling, but also in a way through their clustering to impacts the rate at which β-catenins are involved in the destruction loop. Additionally, cadherin clustering increases the phosphorylation rate of β-catenins and promotes its signaling in nucleus.
Project description:In this study we demonstrate that planar cell polarity signaling regulates morphogenesis in Xenopus embryos in part through the assembly of the fibronectin (FN) matrix. We outline a regulatory pathway that includes cadherin adhesion and signaling through Rac and Pak, culminating in actin reorganization, myosin contractility, and tissue tension, which, in turn, directs the correct spatiotemporal localization of FN into a fibrillar matrix. Increased mechanical tension promotes FN fibril assembly in the blastocoel roof (BCR), while reduced BCR tension inhibits matrix assembly. These data support a model for matrix assembly in tissues where cell-cell adhesions play an analogous role to the focal adhesions of cultured cells by transferring to integrins the tension required to direct FN fibril formation at cell surfaces.
Project description:Wnt-11/planar cell polarity signaling polarizes mesodermal cells undergoing convergent extension during Xenopus laevis gastrulation. These shape changes associated with lateral intercalation behavior require a dynamic modulation of cell adhesion. In this paper, we report that Wnt-11/frizzled-7 (Fz7) controls cell adhesion by forming separate adhesion-modulating complexes (AMCs) with the paraxial protocadherin (PAPC; denoted as AMCP) and C-cadherin (denoted as AMCC) via distinct Fz7 interaction domains. When PAPC was part of a Wnt-11-Fz7 complex, its Dynamin1- and clathrin-dependent internalization was blocked. This membrane stabilization of AMCP (Fz7/PAPC) by Wnt-11 prevented C-cadherin clustering, resulting in reduced cell adhesion and modified cell sorting activity. Importantly, Wnt-11 did not influence C-cadherin internalization; instead, it promoted the formation of AMCC (Fz7/Cadherin), which competed with cis-dimerization of C-cadherin. Because PAPC and C-cadherin did not directly interact and did not form a joint complex with Fz7, we suggest that Wnt-11 triggers the formation of two distinct complexes, AMCC and AMCP, that act in parallel to reduce cell adhesion by hampering lateral clustering of C-cadherin.
Project description:CD148 is a transmembrane tyrosine phosphatase that is expressed at cell junctions. Recent studies have shown that CD148 associates with the cadherin/catenin complex and p120 catenin (p120) may serve as a substrate. However, the role of CD148 in cadherin cell-cell adhesion remains unknown. Therefore, here we addressed this issue using a series of stable cells and cell-based assays. Wild-type (WT) and catalytically inactive (CS) CD148 were introduced to A431D (lacking classical cadherins), A431D/E-cadherin WT (expressing wild-type E-cadherin), and A431D/E-cadherin 764AAA (expressing p120-uncoupled E-cadherin mutant) cells. The effects of CD148 in cadherin adhesion were assessed by Ca2+ switch and cell aggregation assays. Phosphorylation of E-cadherin/catenin complex and Rho family GTPase activities were also examined. Although CD148 introduction did not alter the expression levels and complex formation of E-cadherin, p120, and β-catenin, CD148 WT, but not CS, promoted cadherin contacts and strengthened cell-cell adhesion in A431D/E-cadherin WT cells. This effect was accompanied by an increase in Rac1, but not RhoA and Cdc42, activity and largely diminished by Rac1 inhibition. Further, we demonstrate that CD148 reduces the tyrosine phosphorylation of p120 and β-catenin; causes the dephosphorylation of Y529 suppressive tyrosine residue in Src, a well-known CD148 site, increasing Src activity and enhancing the phosphorylation of Y228 (a Src kinase site) in p120, in E-cadherin contacts. Consistent with these findings, CD148 dephosphorylated both p120 and β-catenin in vitro. The shRNA-mediated CD148 knockdown in A431 cells showed opposite effects. CD148 showed no effects in A431D and A431D/E-cadherin 764AAA cells. In aggregate, these findings provide the first evidence that CD148 promotes E-cadherin adhesion by regulating Rac1 activity concomitant with modulation of p120, β-catenin, and Src tyrosine phosphorylation. This effect requires E-cadherin and p120 association.
Project description:Modifier of cell adhesion (MOCA) is a member of the dedicator of cytokinesis 180 family of proteins and is highly expressed in CNS neurons. MOCA is associated with Alzheimer's disease tangles and regulates the accumulation of amyloid precursor protein and beta-amyloid. Here, we report that MOCA modulates cell-cell adhesion and morphology. MOCA increases the accumulation of adherens junction proteins, including N-cadherin and beta-catenin, whereas reducing endogenous MOCA expression lowers cell-cell aggregation and N-cadherin expression. MOCA colocalizes with N-cadherin and actin in areas of cell-cell and cell substratum contact and is expressed in neuronal processes. MOCA accumulates during neuronal differentiation, and its expression enhances NGF-induced neurite outgrowth and morphological complexity. We conclude that MOCA regulates N-cadherin-mediated cell-cell adhesion and neurite outgrowth.
Project description:Cell polarity is orchestrated by numerous extracellular cues, and guides events such as chemotaxis, mitosis and wound healing. In scrape-wound assays of cell monolayers, wound-edge cells orient their centrosomes towards the wound, a process that appears to depend on the formation of new cell-extracellular-matrix adhesions as cells spread into the wound. In direct contrast to scrape-wounded cells, isolated cells without cell-cell contacts failed to polarize, suggesting that asymmetry of cell-cell adhesions resulting from monolayer disruption might contribute to polarization. By using micropatterned substrates to engineer such asymmetries in kidney epithelial cells, we found that cell-cell contact induced displacement of the nucleus towards the contact, and also caused centrosomal reorientation and lamellipodial ruffling to the distal side of the nucleus. Upon release from micropatterned constraints, cells exhibited directed migration away from the cell-cell contact. Disrupting E-cadherin engagement randomized nuclear position and lamellipodial ruffling in patterned cultures, and abrogated scrape-wound-induced cell reorientation, but not migration rate. Polarity that was induced by cell-cell contact required an intact actin cytoskeleton and Cdc42 activity, but not RhoA or Rac signaling. Together, these findings demonstrate a novel role for cell-cell adhesion in polarization, and have implications for wound healing and developmental patterning.
Project description:The metabolic pathway of protein N-glycosylation influences intercellular adhesion by affecting the composition and cytoskeletal association of E-cadherin protein complexes, or adherens junctions (AJs). In sparse cells, E-cadherin is modified extensively with complex N-glycans and forms nascent AJs, while in dense cultures, hypoglycosylated E-cadherin drives the assembly of mature AJs with increased levels of γ- and α-catenins. N-glycosylation of E-cadherin is controlled by the DPAGT1 gene, a key regulator of the N-glycosylation pathway. DPAGT1 is a target of the canonical Wnt signaling pathway, with both β- and γ-catenins binding to Tcf at its promoter. We now report that DPAGT1 senses cell density through canonical Wnt signaling. In dense cells, depletion of β-catenin from the DPAGT1 promoter correlated with downregulation of its cellular abundance, while loss of nuclear γ-catenin reflected its greater recruitment to AJs. DPAGT1 itself affected canonical Wnt signaling, with forced changes in its expression resulting in corresponding changes in transcriptionally active β-catenin and canonical Wnt activity. Remarkably, a 2.4-fold increase in the DPAGT1 mRNA level resulted in increased N-glycosylation and reduced membrane localization of E-cadherin, coincident with dramatic changes in cell morphology. Lastly, we present evidence that N-glycosylation status of E-cadherin controls its antagonism of canonical Wnt signaling. Transfection of hypoglycosylated E-cadherin mutant, V13, but not fully N-glycosylated E-cadherin, into sparse cells inhibited canonical Wnt activity by depleting nuclear β- and γ-catenins. Collectively, our studies show that cells coordinate DPAGT1 expression and protein N-glycosylation with canonical Wnt signaling and E-cadherin adhesion via positive and negative feedback mechanisms.
Project description:The aggregation of nephron progenitor cells (NPC) is required to form the nephron precursor renal vesicle (RV) as they undergo the mesenchymal-to-epithelial transition (MET). Canonical Wnt signaling regulates the MET of NPCs via the effector molecule β-catenin. β-catenin acts as a transcriptional co-activator during the differentiation of NPCs, however, if it has any role as an adhesion regulating molecule via the cadherin-catenin complex is currently unknown. Using in vitro NPC culture system with gene editing and modulated Wnt signaling input, we investigated the morphological transition of NPCs and its underlying mechanism modeling the initial step of the MET in vivo. Increasing Wnt signaling input with the small molecule agonist CHIR resulted in the aggregation of NPCs similar to the generation of the nephron anlagen. By removing β- and α-catenin from the NPCs, NPCs are sorted out from these aggregates, demonstrating the key role of the cadherin-catenin complex in the aggregation. β-catenin was essential for the induction, however, the removal of α-catenin did not affect the transcriptional profile of NPCs. Removal of extracellular Ca2+ resulted in the transient loss of cell-cell contacts suggesting the role of cadherins in the aggregation process. The analysis of in vitro bulk RNA-seq cadherin expression profile matched the in vivo cadherin expression profile determined by single-cell RNA-seq. The combined removal of pre-existing and inducible cadherins phenocopied the results of β- and α-catenin KO experiments highlighting the crucial role of the cadherin-catenin complex by multiple lines of evidence. Notably, the induction of NPCs is independent of their aggregation. The in vitro modeling of nephron development provides a mechanistic understanding how cell adhesion is regulated via the cadherin-catenin complex during nephrogenesis.
Project description:Defects in protein O-mannosylation lead to severe congenital muscular dystrophies collectively known as α-dystroglycanopathy. A hallmark of these diseases is the loss of the O-mannose-bound matriglycan on α-dystroglycan, which reduces cell adhesion to the extracellular matrix. Mutations in protein O-mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGNT1), which is crucial for the elongation of O-mannosyl glycans, have mainly been associated with muscle-eye-brain (MEB) disease. In addition to defects in cell-extracellular matrix adhesion, aberrant cell-cell adhesion has occasionally been observed in response to defects in POMGNT1. However, specific molecular consequences of POMGNT1 deficiency on cell-cell adhesion are largely unknown. We used POMGNT1 knockout HEK293T cells and fibroblasts from an MEB patient to gain deeper insight into the molecular changes in POMGNT1 deficiency. Biochemical and molecular biological techniques combined with proteomics, glycoproteomics, and glycomics revealed that a lack of POMGNT1 activity strengthens cell-cell adhesion. We demonstrate that the altered intrinsic adhesion properties are due to an increased abundance of N-cadherin (N-Cdh). In addition, site-specific changes in the N-glycan structures in the extracellular domain of N-Cdh were detected, which positively impact on homotypic interactions. Moreover, in POMGNT1-deficient cells, ERK1/2 and p38 signaling pathways are activated and transcriptional changes that are comparable with the epithelial-mesenchymal transition (EMT) are triggered, defining a possible molecular mechanism underlying the observed phenotype. Our study indicates that changes in cadherin-mediated cell-cell adhesion and other EMT-related processes may contribute to the complex clinical symptoms of MEB or α-dystroglycanopathy in general and suggests that the impact of changes in O-mannosylation on N-glycosylation has been underestimated.
Project description:Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin-dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell-cell adhesion assay and live cell imaging of cell-cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell-cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell-cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell-cell adhesion.