ABSTRACT:
This model is from the article:
A quantitative comparison of Calvin–Benson cycle models
Anne Arnold, Zoran Nikoloski
Trends in Plant Science2011 Oct 14.
22001849,
Abstract:
The Calvin-Benson cycle (CBC) provides the precursors for biomass synthesis necessary for plant growth. The dynamic behavior and yield of the CBC depend on the environmental conditions and regulation of the cellular state. Accurate quantitative models hold the promise of identifying the key determinants of the tightly regulated CBC function and their effects on the responses in future climates. We provide an integrative analysis of the largest compendium of existing models for photosynthetic processes. Based on the proposed ranking, our framework facilitates the discovery of best-performing models with regard to metabolomics data and of candidates for metabolic engineering.
Note: Model of the Calvin cycle by Giersch et al. (1990, DOI:10.1007/BF00032595). The parameter values are taken from Figure 4 and 5. The initial metabolite values are chosen from the data set of Zhu et al. (2007, DOI:10.1104/pp.107.103713). A detailed description of all modifications is given in the model described by Arnold and Nikoloski (2011, PMID:22001849.This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2012 The BioModels.net Team.
For more information see the terms of use.
To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.