Nègre2023 - Genome-Scale Metabolic Network of Penicillium rubens Wisconsin 54-1255
Ontology highlight
ABSTRACT: Using in silico modelling, such Genome-Scale Metabolic Network (GSMN), represents a promising approach to predicting and understanding the potential for specialised metabolite production in a given organism. To address these questions, we reconstructed a new high-quality GSMN for the Penicillium rubens Wisconsin 54-1255 strain, a commonly used model organism. Our reconstruction, iPrub22, adheres to current convention standards and quality criteria, incorporating updated functional annotations, orthology searches with different GSMN templates, data from previous reconstructions, and manual curation steps targeting basal and specialised metabolites. With a MEMOTE score of 74% and a metabolic coverage of 45%, iPrub22 includes 5,464 metabolites interconnected by 5,919 reactions, of which 5,033 are supported by at least one genomic sequence. Of the metabolites present in iPrub22, 13% are categorised as belonging to specialised metabolism.
SUBMITTER: Delphine Nègre
PROVIDER: MODEL2306150001 | BioModels | 2023-06-20
REPOSITORIES: BioModels
ACCESS DATA