Ontology highlight
ABSTRACT:
SUBMITTER: Zainab Ashimiyu-Abdusalam
PROVIDER: MODEL2405130002 | BioModels | 2024-05-13
REPOSITORIES: BioModels
Action | DRS | |||
---|---|---|---|---|
MODEL2405130002?filename=BioModelsMetadata%20-%20eos42ez.csv | Csv |
Items per page: 5 1 - 1 of 1 |
Wong Felix F Zheng Erica J EJ Valeri Jacqueline A JA Donghia Nina M NM Anahtar Melis N MN Omori Satotaka S Li Alicia A Cubillos-Ruiz Andres A Krishnan Aarti A Jin Wengong W Manson Abigail L AL Friedrichs Jens J Helbig Ralf R Hajian Behnoush B Fiejtek Dawid K DK Wagner Florence F FF Soutter Holly H HH Earl Ashlee M AM Stokes Jonathan M JM Renner Lars D LD Collins James J JJ
Nature 20231220 7997
The discovery of novel structural classes of antibiotics is urgently needed to address the ongoing antibiotic resistance crisis<sup>1-9</sup>. Deep learning approaches have aided in exploring chemical spaces<sup>1,10-15</sup>; these typically use black box models and do not provide chemical insights. Here we reasoned that the chemical substructures associated with antibiotic activity learned by neural network models can be identified and used to predict structural classes of antibiotics. We test ...[more]