Detection of microRNA expression during 3T3-L1 pre-adipocyte differentiation using a custom made microarray chip.
Ontology highlight
ABSTRACT: Differentiation of 3T3-L1 cells into adipocytes involves a highly orchestrated series of events including clonal expansion, growth arrest and terminal differentiation. The mechanisms coordinating these different steps are not yet fully understood. Here we investigated whether micro (mi)RNAs play a role in this process. Microarray analysis was performed to detect miRNA expression during 3T3-L1 preadipocyte differentiation. Several miRNAs, including let-7, were up-regulated during 3T3-L1 adipogenesis. Ectopic introduction of let-7 into 3T3-L1 cells inhibited clonal expansion as well as terminal differentiation. The mRNA encoding high mobility group AT-hook 2 (HMGA2), a transcription factor that regulates growth and proliferation in other contexts, was inversely correlated with let-7 levels during 3T3-L1 cell adipogenesis, and let-7 markedly reduced HMGA2 concentrations. Knockdown of HMGA2 inhibited 3T3-L1 differentiation. These results suggest that let-7 plays an important role in adipocyte differentiation and that it does so in part by targeting HMGA2, thereby regulating the transition from clonal expansion to terminal differentiation. 3T3-L1 cells were induced to differentiation into mature adipocytes using a canonical DMI cocktail. The time point at two days after confluency of 3T3-L1 was defined as day 0. Samples were collected at day 0, day 1, day 4, and day 7. The expression of microRNAs at day 1, day 4, and day 7 was compared to that of day 0.
ORGANISM(S): Mus musculus
SUBMITTER: Quan-Zhen Li
PROVIDER: E-GEOD-16229 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA