Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Expression data from Xenopus anterior gut RFX6 knockdown


ABSTRACT: Recently a new neonatal diabetes syndrome, Mitchell-Riley syndrome, was discovered. To identify the genetic cause of the syndrome homozygosity mapping was used, several chromosomal regions were linked to Mitchell-Riley syndrome. In situ hybridization of genes from one such region using model organism Xenopus laevis identified RFX6 as a potential candidate gene; mutant forms of RFX6 were subsequently found in Mitchell-Riley patients. Analysis of the expression pattern of RFX6 in Xenopus development shows it is expressed broadly in the endoderm early in development, and later RFX6 becomes restricted to the endocrine cells of the gut and pancreas. Morpholino knockdown of RFX6 in Xenopus caused a loss of pancreas marker gene expression. Injection of exogenous wild type RFX6 rescued the morpholino phenotype in Xenopus tadpoles. Attempts to rescue the loss-of-function phenotype using mutant forms of RFX6 found in Mitchell-Riley patients were unsuccessful suggesting the changes lead to loss-of-function and could be the cause of Mitchell-Riley syndrome. Microarray analysis of gene expression in knockdown tissue suggested a downregulation in marker genes for lung, stomach and heart, ambiguous results for the liver, and an upregulation in kidney marker gene expression. RT-PCR and in situ hybridization confirms a loss of lung, stomach and heart gene expression, no change in liver marker hex and an upregulation in kidney marker KcnJ1. The fact that the morpholino phenotype affects multiple organs suggests that RFX6 has a broad role early in endoderm development. Xenopus laevis embryos were injected with morpholinos, either mismatch control (MM) or RFX6 start site (MO1), at the 8-cell stage. The foreguts of the resulting tadpoles were dissected at 3 different stages of development, NF30, NF40 and NF44.

ORGANISM(S): Xenopus laevis

SUBMITTER: Esther Pearl 

PROVIDER: E-GEOD-23642 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes.

Pearl Esther J EJ   Jarikji Zeina Z   Horb Marko E ME  

Developmental biology 20110104 1


Mutations in rfx6 were recently associated with Mitchell-Riley syndrome, which involves neonatal diabetes, and other digestive system defects. To better define the function of Rfx6 in early endoderm development we cloned the Xenopus homologue. Expression of rfx6 begins early, showing broad expression throughout the anterior endoderm; at later stages rfx6 expression becomes restricted to the endocrine cells of the gut and pancreas. Morpholino knockdown of rfx6 caused a loss of pancreas marker exp  ...[more]

Similar Datasets

2011-01-24 | GSE23642 | GEO
2020-03-30 | E-MTAB-6626 | biostudies-arrayexpress
2020-10-23 | E-MTAB-9243 | biostudies-arrayexpress
2013-11-12 | GSE47578 | GEO
2006-11-08 | E-MNIA-94 | biostudies-arrayexpress
2021-05-17 | E-MTAB-9104 | biostudies-arrayexpress
2019-04-23 | E-MTAB-7716 | biostudies-arrayexpress
2019-04-30 | GSE130448 | GEO
2019-09-26 | GSE126597 | GEO
2019-09-26 | GSE126598 | GEO