Methyl DIP-chip from self-pollinated ddm1 mutant and ddm1 kyp double mutant
Ontology highlight
ABSTRACT: Methylation of histone H3 lysine 9 (H3K9me) and small RNA are associated with constitutively silent chromatin in diverse eukaryotes including plants. In plants, silent transposons are also marked by cytosine methylation, especially at non-CpG sites. The transposon-specific non-CpG methylation in plants is controlled by small RNA and H3K9me. Although it is often assumed that small RNA directs H3K9me, interaction between small RNA and H3K9me has not been directly shown in plants. We have previously shown that a mutation in a chromatin remodeling gene DDM1 (decrease in DNA methylation) induces a global decrease as well as local increase of cytosine methylation and accumulation of small RNA in a locus called BONSAI. Here we show that the de novo BONSAI methylation does not depend on RNAi but depends on H3K9me. Notably, in mutant of H3K9 methylase gene KRYPTONITE or H3K9me-dependent DNA methylase gene CHROMOMETHYALSE3, the ddm1-induced de novo cytosine methylation was abolished for all three contexts, CpG, CpHpG, and CpHpH. Furthermore, RNAi mutants showed strong developmental defects when combined with ddm1 mutation. Our results revealed unexpected interactions of epigenetic modifications, which could be conserved among diverse eukaryotes. comparison of DNA methylation between WT, 2G ddm1 (2 replications), 8G ddm1 (2 replications), and 8G ddm1 kyp
ORGANISM(S): Arabidopsis thaliana
SUBMITTER: Taku Sasaki
PROVIDER: E-GEOD-34222 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA