Expression data from Ad-β-catenin-GFP or Ad-GFP infected cardiomyocytes
Ontology highlight
ABSTRACT: The Wnt pathway is a key regulator of embryonic development, cell growth, differentiation, polarity formation, neural development, carcinogenesis, and stem cell self-renewal, and deregulation of the Wnt signalling is associated with many human disease. The central player in the Wnt pathway is β-catenin, A recent study has shown that β-catenin/Tcf/Lef signaling pathway is an essential growth-regulatory pathway in cardiomyocytes. We used DNA microarrays to detail the global trends in gene expression underlying β-catenin-overexpressed cardiomyocytes and identified distinct classes of up- or down-regulated genes during this process. Our findings suggest that β-catenin plays a critical role in regulating cardiac dysfunction at transcriptional level and may provide novel insight into how β-catenin modulates heart diseases. Cardiomyocytes were infected with GFP control or β-catenin adenoviruses for RNA extraction and hybridization on Affymetrix microarrays. We sought to define the effects of β-catenin on the global programme of gene expression in primary cardiomyocytes. To that end, neonatal rat cardiomyocytes were infected with GFP control (G) or β-catenin adenovirus (B) for 24 hours.
ORGANISM(S): Rattus norvegicus
SUBMITTER: junjie li
PROVIDER: E-GEOD-34772 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA