Project description:Diurnal time-course transcriptional profiling of rice leaf in the field comparing a circadian clock related mutant, osgi, with the wild-type (WT). Two sample experiments (WT vs. osgi) : 13 time-points (2h interval), 8 replicates (2leaves from individual plants x 4stages(each staggered by tranplanting dates with one week interval)): sampled on Aug. 12th 7:00-Aug.13th 7:00 (2008) at a paddy field in Tsukuba (Japan)
Project description:Time-course transcriptional profiling of rice leaf of the temperature shift experiment in a growth chamber. This experiment was performed to validate the results of field transcriptomic modeling. Rice leaves (cv. Norin8) were collected at 2:00 and 14:00 on the day -1, 2, 4 and 6 from the temperature shift (diurnal cycle temperature condition to continuous temperature condition). Two biological replicates for each sampling time point.
Project description:Time-course transcriptional profiling of rice leaf in the field in 2009. This experiment was performed to validate the results of field transcriptomic modeling. Using 461 field transcriptome data obtained in 2008 (GSE36040; GSE36042; GSE36043; GSE36044; GSE18685) and the corresponding meteorologicla dara, we perfomred statistical modeling of transcriptome. Rice leaves (Norin8 vs. osgi) in the paddy field were collected on Aug. 10 - 12, 24 - 25, 31, Oct. 8 - 9 in 2009.
Project description:Time-course in rice plants of the day length shift experiment in a growth chamber. Rice plants (cv. Norin 8) were collected at every 2h from dusk to noon on the day 0, 1, and 5 from the day length shift (a long-day conditon to a short-day condition).
Project description:Tissue-specific transcriptional profiling of the abscission layer (AL) at the base of young flower in rice using laser micro-dissection: NIL(qSH1) vs. Nipponbare. We used two rice varieties, NIL(qSH1) and Nipponbare. NIL(qSH1) is a nearly isogenic line containing the seed shattering gene qSH1. Seed shattering is easy in NIL(qSH1), but it is not in Nipponbare. So, we used some stages of young flower in NIL(qSH1) and some in Nipponbare. Four regions: 1. abscission layer region of NIL(qSH1), 2. upper abscission region of NIL(qSH1), 3. lower abscission layer region of NIL(qSH1), and 4. abscission layer region of Nipponbare. Sample experiments: NIL(qSH1) AL vs. Nipponbare AL, NIL(qSH1) AL vs. NIL(qSH1) upper region of AL, and NIL(qSH1) AL vs. NIL(qSH1) lower region of AL.
Project description:Plant diurnal oscillation is a 24-hour period based variation. The correlation between diurnal genes and biological pathways was widely revealed by microarray analysis in different species. Rice (Oryza sativa) is the major food staple for about half of the world's population. The rice flag leaf is essential in providing photosynthates to the grain filling. However, there is still no comprehensive view about the diurnal transcriptome for rice leaves. In this study, we applied rice microarray to monitor the rhythmically expressed genes in rice seedling and flag leaves. We developed a new computational analysis approach and identified 6,266 (10.96%) diurnal probe sets in seedling leaves, 13,773 (24.08%) diurnal probe sets in flag leaves. About 65% of overall transcription factors were identified as flag leaf preferred. In seedling leaves, the peak of phase distribution was from 2:00am to 4:00am, whereas in flag leaves, the peak was from 8:00pm to 2:00am. The diurnal phase distribution analysis of gene ontology (GO) and cis-element enrichment indicated that, some important processes were waken by the light, such as photosynthesis and abiotic stimulus, while some genes related to the nuclear and ribosome involved processes were active mostly during the switch time of light to dark. The starch and sucrose metabolism pathway genes also showed diurnal phase. We conducted comparison analysis between Arabidopsis and rice leaf transcriptome throughout the diurnal cycle. In summary, our analysis approach is feasible for relatively unbiased identification of diurnal transcripts, efficiently detecting some special periodic patterns with non-sinusoidal periodic patterns. Compared to the rice flag leaves, the gene transcription levels of seedling leaves were relatively limited to the diurnal rhythm. Our comprehensive microarray analysis of seedling and flag leaves of rice provided an overview of the rice diurnal transcriptome and indicated some diurnal regulated biological processes and key functional pathways in rice. we generate rice diurnal gene expression profiles of seedling leaves and flag leaves using 57K Affymetrix rice whole genome array. keywords: rice (Oryza sativa L.), seedling leaves, flag leaves, diurnal, molecular functions, microarray
Project description:Mass spectrometry remains an important method for analysis of modified nucleosides ubiquitously present in cellular RNAs, in particular for ribosomal and transfer RNAs that play crucial roles in mRNA translation and decoding. Furthermore, modifications have effect on the lifetimes of nucleic acids in plasma and cells and are consequently incorporated into RNA therapeutics. To provide an analytical tool for sequence characterization of modified RNAs, we developed Pytheas, an open-source software package for automated analysis of tandem MS data for RNA. This dataset contains the analysis of 14N and 15N-labeled synthetic mRNA of the SARS-CoV-2 spike protein. All uridines were modified to m1Ψ.
Project description:The goal is to know which kinds of gene are affected in rice leaves by OsHAP2E over-expression Transgenic rice with OsHAP2E driven by CaMV35S promoter was produced by Agrobacterium. The resultant two over-expressed lines were used for rice 44K microarray with two colors.
Project description:Comparison of the endogenous small RNA content of tomato leaves and fruits. Size fractionated small RNA from total RNA extracts was ligated to adapters, purified again and reverse transcribed. After PCR amplification the sample was subjected to 454 high throughput pyrosequencing. Please see www.454.com for details of the sequencing technology. Note: Raw data files were not available from 454 at the time this experiment was carried out.
Project description:Rice blast disease is a major threat to rice production worldwide, but the mechanisms underlying rice resistance to the causal agent Magnaporthe oryzae remain elusive. In this whole-genome transcriptome study of rice early defense response to M. oryzae, we applied Affymetrix Rice Genome Genechip to compare the compatible and incompatible rice-M. oryzae interactions in 24 hours post-inoculation. Leaf samples were harvested from three biological replicates of fungal- and mock-inoculated seedlings at 24 hours post-inoculation, from which RNA were extracted and analyzed with Genechip Rice Genome Array.