The galactose regulator GalX regulates the D-galactose oxido-reductive pathway in Aspergillus niger.
Ontology highlight
ABSTRACT: Galactose catabolism in Aspergillus nidulans is regulated by at least two regulators, GalR and GalX. In Aspergillus niger only GalX is present, and its role in D-galactose catabolism in this fungus was investigated. Phenotypic and gene expression analysis of a wild type and a galX disruptant revealed that GalX does not substitute for the absence of GalR in A. niger, it regulates the D-galactose oxido-reductive pathway, but not the Leloir pathway. Four genes, including the recently characterized ladB (galactitol dehydrogenase) were found to have differencial expressions that are highly relevant to GalX , indicating a novel oxido-reductive pathway in A.niger . We aim to discover differentially expressed genes in A.niger wild type strain N402 and M-NM-^TgalX mutant while growing on galactose as carbon source. Biological duplicates were made for both strains. The strains were grown O/N in complete medium with 2% frunctose and mycelium was then washed and transferred to minimal medium with 25 mM D-galactose and incubated for 2 hours. Affymetrix microarray experiments were performed RNA isolated from these samples.
ORGANISM(S): Aspergillus niger
SUBMITTER: miaomiao Zhou
PROVIDER: E-GEOD-40219 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA