Project description:We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression. Growing in petri dish mouse mesenchymal stem cell cultures are irradiated for 12 hours with pulsed ultrafast (35 fs) broadband (centered at ~10 THz) source. Three independent biological experiments were conducted. In each experiment, a control mMSC culture was placed adjacent to the irradiated sample, and the temperature was kept at 26-27M-BM-:C for both the control and the irradiated sample. Immediately after completing the irradiation, total RNA was extracted from the irradiated sample and the control, and microarrays were used to identify differential changes in gene expression between the irradiated sample and its respective control. In each experiment, the mMSC cultures were synchronized to be at the same differentiation time point immediately before the irradiation.
Project description:We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression. Growing in petri dish mouse mesenchymal stem cell cultures are irradiated for 2 hours with pulsed ultrafast (35 fs) broadband (centered at ~10 THz) source. Three independent biological experiments were conducted. In each experiment, a control mMSC culture was placed adjacent to the irradiated sample, and the temperature was kept at 26-27M-BM-:C for both the control and the irradiated sample. Immediately after completing the irradiation, total RNA was extracted from the irradiated sample and the control, and microarrays were used to identify differential changes in gene expression between the irradiated sample and its respective control. In each experiment, the mMSC cultures were synchronized to be at the same differentiation time point immediately before the irradiation.
Project description:The N-glycome was mapped and visualised on formalin-fixed mouse kidney tissue using an ultrafleXtreme MALDI-ToF/ToF MS instrument (Bruker Daltonics).
Project description:Tryptic peptides and N-glycans were spatially mapped and visualised on formalin-fixed paraffin-embedded (FFPE) endometrial cancer tissue microarrays (TMAs) using an ultrafleXtreme MALDI-ToF/ToF MS instrument (Bruker Daltonics). FFPE egg white was placed either side of each TMA and used as an external control to monitor detector performance and sample preparation.
Project description:We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression. Growing in petri dish mouse mesenchymal stem cell cultures are irradiated for 2 hours with a single-frequency (2.52 THz) CW laser source. Three independent biological experiments were conducted. In each experiment, a control mMSC culture was placed adjacent to the irradiated sample, and the temperature was kept at 26-27M-BM-:C for both the control and the irradiated sample. Immediately after completing the irradiation, total RNA was extracted from the irradiated sample and the control, and microarrays were used to identify differential changes in gene expression between the irradiated sample and its respective control. In each experiment, the mMSC cultures were synchronized to be at the same differentiation time point immediately before the irradiation.
Project description:Several cyclin-dependent kinases (CDKs) are known to have roles in transcriptional regulation. The datasets presented here are ChIP-seq experiments for different CDKs and RNA polymerase II in murine embryonic stem cells and Jurkat cells. ChIP-Seq of cyclin-dependent kinases in mouse embryonic stem cells and Jurkat human T cell acute lymphoblastic leukemia cell line
Project description:Photoageing in skin is commonly recognised by architectural remodelling of dermal extracellular matrix components. Mass spectrometry was previously used to identify tissue-specific patterns of fibrillin-1 and collagen VI peptide spectrum matches (PXD008450). This study aimed to determine if the same mass spectrometry-based approach could detect peptide spectrum match patterns and significantly differences in relative abundance of peptide sequences characteristic of damage following exposure to UVR of co-purified suspensions of fibrillin and collagen VI microfibrils. Human dermal fibroblast-derived suspensions of microfibrils were irradiated with either broadband UVB or solar simulated radiation (SSR). UVR-induced molecular damage was characterised by proteolytic peptide generation with elastase followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). This allowed the molecular scale identification of UV-induced structural changes within two skin matrix assemblies. The proteomic approaches used have the potential to facilitate the rapid, protein-specific identification of differential molecular fingerprints of damage in key extracellular matrix proteins.
Project description:Cyclin-dependent kinase 7 (CDK7) plays a critical role in the general regulation of RNA polymerase II-mediated transcription. However, the absence of selective CDK7 inhibitors has hindered the ability to investigate the consequences of acute and prolonged inhibition of CDK7 under normal and pathological conditions. Here we present the discovery and characterization of the first covalent CDK7 inhibitor, CDK7-IN-1, that has the unprecedented ability to target a unique cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7 amongst the 20 known CDKs. Cancer cell line profiling indicates that a subset of cancer cell lines, including T-cell acute lymphoblastic leukemia (T-ALL), exhibit 100-fold greater sensitivity to CDK7-IN-1 over other tumor and normal cell lines. Genome-wide expression analysis in Jurkat T-ALL indicates that CDK7-IN-1 disproportionally affects RUNX1 as well as other components of the TAL1 transcriptional network and its targets, downregulating key regulators of transcription and apoptosis critical for the T-ALL state. These oncogenes are encoded by short-lived mRNA transcripts, are associated with super-enhancers, and exhibit a strong dependency on continuous transcription for sustained expression. Therefore, pharmacological modulation of CDK7 kinase activity may define a method for the identification and treatment of tumor types exhibiting extreme dependencies on transcription for maintenance of the oncogenic state. Jurkat cells were treated with various drugs including a covalent inhibitor of CDK7 (CDK7-IN-1), a reversible inhibitor of CDK7 (CDK7-IN-1), Flavopiridol, Actinomycin D, and DMSO controls. Replicates are annotated.
Project description:XPA is required for Nucleotide Excision Repair system, which could function to repair DNA damage induced by the UV. UV damage on the genomic DNA cannot be removed, thus persistence of damage could affect the transcriptional machinary. We used the microarray to investigate the global expression profiles in the XP-A and XP-V cells in the low dose of UVC comparing with fibroblast from healthy person. Human primary fibroblasts were developed from the skin of healthy person and two XP patients (XP-A and XP-V). We evaluated global expression profiles comparing the UVC-exposed (0.5J/m2, 5J/m2) with non-exposed sample.