ABSTRACT: To facilitate the functional annotation of the pepper genome, we generated 90.84 Gb of RNA-Seq data from 33 libraries representing all major tissue types and developmental stages of Zunla 1, as well as fruits from other accessions with significant phenotypic differences. Pepper ‘Zunla 1’ and other inbred lines were grown in a greenhouse as described in Table S1, with their different developmental stages Plants at full-bloom stage were harvested for roots, stems, and leaves as the same as the samples for phased small RNAs (see text S3.4.2 for details). Mature plants were harvested for unopened flower buds (buds) and fully open flowers (flowers). Additional flowers were allowed to self-pollinate and fruit was harvested at four pre-breaker stages (1-3cm, 3-4cm, 4-5cm fruit length, and mature green), the breaker stage (when the fruit was turning red) and three post-breaker stages (3, 5, and 7 days after breaker). These samples will respectively be referred to as Root, Stem, Leaf, Bud, Flower, F-Dev-1, F-Dev-2, F-Dev-3, F-Dev-4, F-Dev-5, F-Dev-6, F-Dev-7, F-Dev-8, and F-Dev-9. Similar roots, stems, leaves, immature fruit and red fruit were harvested from other inbred lines from domesticated Capsicum species. Meanwhile, chiltepin plants were grown under long days at controlled temperature and RNA was extracted from a mix of leaves from four stages (seedling, early blooming, full bloom, and fruit breaker phases), a mix of flowers from unopened flower buds (buds) and fully open flowers (flowers), and fruit at breaker and breaker plus five days respectively. All tissues were frozen in liquid nitrogen and then stored at -80℃. Total RNA was isolated from different samples by using the Trizol Reagent (Invitrogen) according to manufacturer’s instructions. Strand-specific RNA-Seq library preparations were performed as previously described (39) with 12 independently bar-coded samples sequenced on one lane of an Illumina HiSeq2000 system. The 200 bp paired-end libraries were sequenced using Illumina HiSeq 2000 (90 bp PE).