RMST associates with SOX2 to regulate neurogenesis [ChIP-Seq]
Ontology highlight
ABSTRACT: We report that knockdown of the lncRNA RMST changes the chromatin binding profile of the transcription factor SOX2. Examination of SOX2 chromatin binding profile under normal and RMST-depleted conditions in differentiating neural stem cells.
Project description:We report sequential binding but unique functions of different Sox transcription factors during distinct stages of neural differentiation Loss of function experiment for Sox2/Sox3 in neural progenitor cells and gene expression profile for Sox11 expressing (PSA NCAM sorted) early formed neurons.
Project description:Induced pluripotent stem (iPS) cells can be obtained through the introduction of defined factors into somatic cells. The combination of Oct4, Sox2 and Klf4 (OSK) constitutes the minimal requirement for generating iPS cells from mouse embryonic fibroblasts (MEFs). Through the genomic analyses of ESC genes that have roles in pluripotency and fusion-mediated somatic cell reprogramming, we identified Tbx3 as a transcription factor that significantly improves the quality of iPS cells. Induced-PS cells generated with OSK + Tbx3 (OSKT) are superior in both germ cell contribution to the gonads and germ-line transmission frequency. However, global gene expression profiling could not distinguish between OSK and OSKT iPS cells. Genome-wide ChIP-sequencing analysis of Tbx3 binding sites in ESCs suggests that Tbx3 regulates pluripotency-associated and reprogramming factors, in addition to sharing many common downstream regulatory targets with Oct4, Sox2, Nanog and Smad1. ChIP-seq of Tbx3 binding in mouse ESCs
Project description:Adult germline stem cells (AGSCs) are multifunctional - they must self renew, maintain genome pluripotency, and prepare for gametogenesis – which involves meiotic and chromatin repackaging phases. To better understand AGSCs and gametogenesis, we derived high-resolution profiles of transcription, DNA methylation, 5hmC, and multiple histone modifications at key stages. First, AGSCs display chromatin ‘poising’ of enhancers and promoters of genes utilized in embryo development. Second, the pluripotency network in AGSCs is remarkably distinct from ESCs - lacking Nanog, Sox2, or Prdm14 expression. Third, spermatogenesis involves stage-specific transcription and distinctive chromatin dynamics, but virtually no changes in DNAme. Surprisingly, we observe co-incidence of RNA polymerase II, high H3K4me3, and DNA methylation at 20-35% of genes transcribed during gametogenesis - including piRNA clusters - but often observe attendant promoter 5hmC. Our work reveals key differences between AGSCs and other germ/stem cells, and reveals both logical and unexpected chromatin-transcription relationships accompanying germline developmental transitions. Examination of 7 different histone modifications and 5hMC in 4 different cell types
Project description:Adult germline stem cells (AGSCs) are multifunctional - they must self renew, maintain genome pluripotency, and prepare for gametogenesis – which involves meiotic and chromatin repackaging phases. To better understand AGSCs and gametogenesis, we derived high-resolution profiles of transcription, DNA methylation, 5hmC, and multiple histone modifications at key stages. First, AGSCs display chromatin ‘poising’ of enhancers and promoters of genes utilized in embryo development. Second, the pluripotency network in AGSCs is remarkably distinct from ESCs - lacking Nanog, Sox2, or Prdm14 expression. Third, spermatogenesis involves stage-specific transcription and distinctive chromatin dynamics, but virtually no changes in DNAme. Surprisingly, we observe co-incidence of RNA polymerase II, high H3K4me3, and DNA methylation at 20-35% of genes transcribed during gametogenesis - including piRNA clusters - but often observe attendant promoter 5hmC. Our work reveals key differences between AGSCs and other germ/stem cells, and reveals both logical and unexpected chromatin-transcription relationships accompanying germline developmental transitions. Examination of 3 different histone modifications in human sperm
Project description:PRDM14 belongs to the PR (PRDI-BF1 and RIZ) domain proteins (PRDM) family which is a subclass of the SET domain proteins, a common domain found in histone modifying enzymes. PRDM14 has been previously implicated to regulate self-renewal of hESCs as knock-down of PRDM14 induced expression of differentiation marker genes and altered the cellular morphology. We showed that PRDM14 directly regulates the expression of key pluripotency gene POU5F1. Genome-wide location profiling experiments revealed that PRDM14 co-localized extensively with other key transcription factors such as OCT4, NANOG and SOX2. More importantly, in a gain-of-function assay, we showed that PRDM14 is able to enhance the efficiency of reprogramming of human fibroblasts in conjunction with OCT4, SOX2 and KLF4. Hence, PRDM14 exemplifies a key transcription factor that is required for the maintenance of human ESC identity and the reacquisition of pluripotency in human somatic cells. ChIP-seq of PRDM14 in human ESCs
Project description:Here, using ChIP-Seq, we examined the targets of Nanog-like and Mxtx2 in blastula stage zebrafish embryos. We found that Nanog-like bind to its known targets like Oct4, Sox2, and Nanog-like. Nanog-like also bound to genes involved in extraembryonic lineage differentiation, like gata3 and krt4 for EVL differentiation, and mxtx2 and slc26a1 for YSL differentiation, mesoderm specification like ntl and tbx3, cell movement like wnt11 and cxcr4b, and signaling genes like ndr1, bmp2b, fgf8a and wnt8a. The binding profile suggests that Nanog-like may play a versatile role involving many developmental processes. We found 11.3% of the genes (1751 out of all annotated 15500 zebrafish genes) and 43.6% of the YSL genes (118 out of 271 genes expressed in the YSL) were bound by Mxtx2, suggesting Mxtx2 bound directly to YSL genes to activate their expression Examination of Nanog-like and Mxtx2 binding sites in 3.5hpf and 4.5hpf zebrafish embryos
Project description:Here we show that T-box proteins team up with chromatin modifying enzymes to drive the expression of the key lineage regulator, Eomes during endodermal differentiation of embryonic stem (ES) cells. The Eomes locus is maintained in a transcriptionally poised configuration in ES cells. During early differentiation steps, the ES cell factor Tbx3 associates with the histone demethylase Jmjd3 at the enhancer element of the Eomes locus to allow enhancer-promoter interactions. This spatial reorganization of the chromatin primes the cells to respond to Activin signaling, which promotes the binding of Jmjd3 and Eomes to its own bivalent promoter region to further stimulate Eomes expression in a positive feedback loop. Examination of the binding of pluripotency factors to mouse embryonic stem cells and embryoid bodies
Project description:The spliced variant forms of androgen receptor (AR-Vs) have been identified recently in castration-resistant prostate cancer (CRPC) cell lines and clinical samples. Here we identified the cistrome and transcriptome landscape of AR-Vs in CRPC cell lines and determine the clinical significance of AR variants regulated gene.The AR variants binding sites can be identified in 22Rv1 cell line in the absence of androgen. Knocking down full-length AR (AR-FL) doesn't affect AR-Vs binding sites in genome-wide. A set of genes were identified to be regulated uniquely by AR-Vs, but not by AR-FL in androgen-depleted condition. Integrated analysis showed that some genes may be modulated by AR-Vs directly. Unsupervised clustering analysis demonstrated that AR variants gene signature can separate not only the benign and malignant prostate tissue, but also the localized prostate cancer and metastatic CRPC specimens. Some genes modulated uniquely by AR variants were also identified to correlate with the Gleason Pattern of prostate cancer and PSA failure. We conclude that AR spliced variants bind to DNA independent of full-length AR, and can modulate a unique set of genes which is not regulated by full-length AR in the absence of androgen. AR variants gene signature correlate with CRPC and prostate cnacer disease progress. Androgen receptor (AR) binding sites in human prostate cancer 22Rv1 cell lines were studied using ChIP-seq. ChIP enriched and input DNA were sequenced using Illumina HiSeq 2000.
Project description:The chromatin remodeler CHD5 is expressed in neural tissue and is frequently deleted in aggressive neuroblastoma. Very little is known about the function of CHD5 in the nervous system or its mechanism of action. Here we report that depletion of Chd5 in the developing murine neocortex blocks neuronal differentiation and leads to an accumulation of undifferentiated progenitors. CHD5 binds a large cohort of genes and is required for facilitating the activation of neuronal genes. It also binds a cohort of Polycomb targets and is required for the maintenance of H3K27me3 on these genes. Interestingly, the chromodomains of CHD5 directly bind H3K27me3 and are required for neuronal differentiation. In the absence of CHD5, a subgroup of Polycomb-repressed genes becomes aberrantly expressed. These findings provide new insights into the regulatory role of CHD5 during neurogenesis and suggest how inactivation of this candidate tumor suppressor might contribute to neuroblastoma. Examination of genome-wide binding/occupancy of CHD5 in the SH-SY5Y cell line