The miR-126/VEGFR2 axis controls the innate response to pathogen-associated nucleic acids
Ontology highlight
ABSTRACT: microRNA-126 is a microRNA predominately expressed by endothelial cells and controls angiogenesis. Unexpectedly, we found that mice deficient in miR-126 have a major impairment in their innate response to pathogen-associated nucleic acids, as well as HIV, which results in more widespread cell infection. Further examination revealed that this was due to miR-126 control of plasmacytoid DC (pDC) homeostasis and function, and that miR-126 regulates expression of TLR7, TLR9, NFkB1 and other innate response genes, as well as VEGF-receptor 2 (VEGFR2). Deletion of VEGFR2 on DCs resulted in reduced interferon production, supporting a role for VEGFR2 in miR-126 regulation of pDCs. These studies identify the miR-126/VEGFR2 axis as an important regulator of the innate response that operates through multiscale control of pDCs. Plasmactyoid dendritic cells were FACS-sorted from spleens from wildtype and miR-126 KO mice and their RNA extracted. RNA was amplified, labeled and hybridized to Mouse Gene 1.0 ST arrays with the data generation and quality control pipeline of 19 the Immunological Genome Project (www.immgen.org). Raw data were background-corrected and normalized using the RMA algorithm.
ORGANISM(S): Mus musculus
SUBMITTER: Brian Brown
PROVIDER: E-GEOD-51255 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA