Project description:Genomic imprinting is a form of epigenetic regulation that results in expression of either the maternally or paternally inherited allele of a subset of genes. Imprinted loci contain differentially methylated regions (DMRs) where cytosine methylation marks one of the parental alleles, providing cis-acting regulatory elements that influence the allelic expression of surrounding genes, however to date the total number of imprinted loci within the human genome is unknown. To characterize known imprinted DMRS and identify novel imprinted loci we have performed whole-genome bisulphite sequencing and high-resolution DNA methylation array analysis of healthy tissues. Sequencing of bisulfite converted DNA analysis of normal brain (white matter), liver and term placenta tissue
Project description:Epigenetics may help understanding the molecular mechanisms of atherosclerosis as genetic predisposition explains only part of cardiovascular disease risk. In particular, DNA methylation, a reversible and highly regulative DNA modification could contribute to disease onset and progression as it functions as effector for environmental impacts, including dietary and life-style, similarly to risk factors for cardiovascular diseases. We addressed this issue by performing whole-genome shotgun bisulfite sequencing and high-resolution DNAmethylation array analysis of healthy and diseased donor-matched atherosclerotic DNA methylomes. Sequencing of bisulfite converted DNA and array based analysis of atherosclerotic lesions and normal carotid tissue.
Project description:Whole genome bisulphite sequencing of 13 human cancer samples and 9 normal controls. The main goal is to find the Diffrenetial methylated regions (DMR) at Genome wide level in different tissues and cancer types Sequencing of bisulfite converted DNA human cancer samples and normal control tissue types.
Project description:Whole genome bisulphite sequencing of 2 human breast cancer cell lines representing a breast primary tumor and a matched lymph node metastasis. Sequencing of bisulfite converted DNA of cancer cell line samples.
Project description:Whole genome bisulfite sequencing of MDCK cells, before and after TGFB-induced epithelial-mesenchymal transition Sequencing of bisulfite converted DNA from MDCK cells untreated, and after a 30 days treatment with TGF beta
Project description:We have developed Whole Genome Bisulfite Sequencing (WGBS) of a newborn and a centenarian to address the epigenetic drifts in human aging, which might be an alternative pathway to explain the age-associated alterations. In addition, we have analyzed the methylome of a middle-age donor (26 years). Examination of two DNA methylomes at the most extreme points of their lives to see differences that might contribute to explain the aged phenotype. The methylome of a middle-age donor (26 years) was also analyzed.
Project description:It is evident that epigenetic factors, especially DNA methylation, play essential roles in obesity development. To learn systematic association of DNA methylation to obesity, we used pig as a model, and sampled eight diverse adipose tissues and two distinct skeletal muscle tissues from three pig breeds with distinguished fat levels: the lean Landrace, the fatty Rongchang, and the feral Tibetan pig. We sequenced 180 methylated DNA immunoprecipitation (MeDIP) libraries, generated 1,381 Gbp sequence data, and provided a genome-wide DNA methylation map for pig adipose and muscle studies. The analysis showed global similarities and differences between breeds, genders and tissues, and identified the differentially methylated regions (DMRs) that are preferentially located in intermediate CpG promoters and CpG island shores. The DMRs in promoters are highly associated to obesity development. We also analyzed methylation and regulation of the known obesity-related genes and predicted novel candidate genes. The comprehensive map here provides a solid base for exploring epigenetic mechanisms of adipose deposition and muscle growth. We collected eight diverse adipose tissues and two phenotypically distinct skeletal muscle tissues from three well-defined pig models with distinct fat rates, and studied genome-wide DNA methylation differences among breeds, males and females, and tissues.