Project description:These data suggest that co-culture with macrophages increases expression of NDRG-1 in epithelial cell lines. The finding is confirmed in 2 human epithelial cell lines, and in tissue derived from mice genetically and dietetically altered to increase macrophage infiltration of the small and large intestinal epithelium. NDRG1 is identified as a potential mediator of macrophage effects on tumorigenesis in the large and small intestine. Array data is part of a larger study involving the effects of Vitamin D, in concert with macrophages, on intestinal homeostasis and tumorigenesis. Cells from mouse epithelial cell line CT26 were cultured either alone, or with RAW macrophages in a system which allowed no physical contact but exchange of soluble factors between the cell types. The experiment was peformed twice.
Project description:These data suggest that co-culture with macrophages increases expression of NDRG-1 in epithelial cell lines. The finding is confirmed in 1 mouse epithelial cell line, and in tissue derived from mice genetically and dietetically altered to increase macrophage infiltration of the small and large intestinal epithelium. NDRG1 is identified as a potential mediator of macrophage effects on tumorigenesis in the large and small intestine. Array data is part of a larger study involving the effects of Vitamin D, in concert with macrophages, on intestinal homeostasis and tumorigenesis, entitled Cell autonomous and non-autonomous interactions of a western-style diet and the vitamin D receptor in intestinal homeostasis and tumorigenesis Cells from human colon cancer cell lines were cultured either alone, with Vitamin D3, with THP1 macrophages, or with THP1 macrophages and Vitamin D3, in a system which allowed no physical contact but exchange of soluble factors between the cell types.
Project description:Severe hyposalivation often results from Sjögren’s syndrome or radiation therapy for head and neck cancer. Devastating consequences of hyposalivation, such as rampant dental caries and persistent oral candidiasis, compromise the quality of life in those patients. Clinical management for dry mouth typically involves simple palliative methods or secretagogues, which are designed to stimulate saliva secretion from residual salivary acinar cells present in the glands. However, direct interventions in chronic dryness have yet to be employed in the clinical setting. Despite numerous studies on salivary gland regeneration, the molecular basis governing stem cell transdifferentiation into salivary epithelial precursors (SEP) is largely unknown. Our previously published study clearly indicated mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) can be differentiated into SEP in vitro when co-cultured with isolated primary salivary gland cells without cell-to-cell contact. Our current study utilized iTRAQ-LS-MS/MS-based quantitative proteomics to profile key regulatory factors involved in mouse MSC-to-SEP conversion. We identified 280 differentially expressed proteins in BM-MSCs over the course of 7 days of co-culture. Interestingly, protein expression of salivary transcription factors (STFs), such as transcription factor E2a (TCF3), high mobility group protein 20B (HMG20b), and ankyrin repeat domain-containing protein 56 (ANKRD56) were increased in a time-dependent manner. Notably, pancreas specific transcription factor 1a (PTF1α), muscle, intestine and stomach expression-1 (MIST-1) and achaete-scute complex homolog 3(ASCL3) were newly induced over time in differentiated MSCs. We also identified the expression of Ptf1α in the mouse salivary glands for the first time and verified its expression in independent batches of co-cultured MSCs by western blotting. Furthermore, simulation of the molecular network involving the identified STFs has demonstrated evidence for their perspective roles in salivary gland development during glandular maturation. Thus, our study provides the first extensive proteomic profile of MSC-to-SEP transdifferentiation and identifies novel STFs that may be critical for this process.
Project description:Anaplastic thyroid carcinoma (ATC) is the most lethal subtype of thyroid cancer, with high invasive and metastatic potential, not responding to conventional treatments. Its aggressiveness may be influenced by macrophages, which are abundant cells in the tumor microenvironment. To investigate the role of macrophages in ATC aggressiveness, indirect co-cultures were established between ATC cell lines and THP-1-derived macrophages. Macrophages significantly increased both the migration and invasion of T235 cells (p < 0.01; p < 0.01), contrasting with a decrease in C3948 (p < 0.001; p < 0.05), with mild effects in T238 migration (p < 0.01) and C643 invasion (p < 0.05). Flow cytometry showed upregulation of CD80 (pro-inflammatory, anti-tumoral) and downregulation of CD163 (anti-inflammatory, pro-tumoral) in macrophages from co-culture with T235 (p < 0.05) and C3948 (p < 0.05), respectively. Accordingly, we found an upregulation of secreted pro-inflammatory mediators (e.g., GM-CSF, IL-1α; p < 0.05) in C3948–macrophage co-cultures. Proteomic analysis showed the upregulation of SPRY4, an inhibitor of the MAPK pathway, in C3948 cells from co-culture. SPRY4 silencing promoted cancer cell invasion, reverting the reduced invasion of C3948 caused by macrophages. Our findings support that macrophages play a role in ATC cell aggressiveness. SPRY4 is a possible modulator of macrophage–ATC cell communication, with a tumor suppressor role relevant for therapeutic purposes.
Project description:Analysis of neutrophil proteomic alterations induced by migration towards inflamed joints in juvenile idiopathic arthritis (JIA). In this experiment neutrophil proteomes were investigated after migration towards JIA synovial fluid in an in vitro model of a synovial membrane, compared to neutrophils incubated in synovial fluid without migration. The migration model consisted of transwell inserts with human knee synoviocytes on the undersides and HMEC endothelial cells on the insides, placed in wells containing medium with 10 % JIA synovial fluid.
Project description:Intracellular trafficking pathways in eukaryotic cells are essential to maintain organelle identity and structure, and to regulate cell communication with its environment. Shigella flexneri invades and subverts the human colonic epithelium by the injection of virulence factors through a type 3 secretion system (T3SS). In this work we report the multiple effects of two S. flexneri effectors, IpaJ and VirA, which target small GTPases of the Arf and Rab families, consequently inhibiting several intracellular trafficking pathways. IpaJ and VirA induce large-scale impairment of host protein secretion and block the recycling of surface receptors. Moreover, these two effectors decrease clathrin-dependent and -independent endocytosis. Therefore, S. flexneri infection induces a global blockage of host cell intracellular transport, affecting the exchange between cells and their external environment. The combined action of these effectors disorganizes the epithelial cell polarity, disturbs epithelial barrier integrity, promotes multiple invasion events and enhances the pathogen capacity to penetrate into the colonic tissue in vivo.
Project description:We model processes of wound healing and tumor growth, by studying the effects of normal and cancer epithelial cells on normal fibroblasts and their reciprocal effect on normal keratinocytes in vitro. We find strong parallels between the two processes and compare our observations with transcriptional analysis of 24 clinical samples of squamous cell carcinoma. This dataset contains the tissue culture samples, for the clinical samples, see E-MTAB-1065. Normal human fibroblasts (HF) were cocultured with either normal HK or transformed epithelial cells (HaCaT and FaDu) and their expression profile was compared to the expression profile of HF cultured alone.
Project description:Although intestinal microbiota play a pivotal role in the development of host immune system this biological issue was not so far studied in great detail. In this study we examined immune response of Caco-2 enterocytes after incubation with common probiotic Bifidobacterium animalis subsp. lactis BB-12 for 4 hours. We used microarrays to inspect the global gene expression of Caco-2 cells upon co-culturing with B. animalis subsp. lactis BB-12 and several distinct immune-related genes up-regulated during this process. One time point (T4) and two controls (T0) were analysed. T0 represent differentiated Caco-2 cells cultivated for 3 weeks. T4 represents differentiated Caco-2 cells cultivated for 3 weeks plus consequent 4 hours of co-cultivation with B. animalis subsp. lactis BB-12. 3 technical replicates for T0-1, T0-2 or T4 were pooled to a single sample, RNA extracted and further used in gene expression experiments.
Project description:M cells are the main site of bacterial translocation in the intestine. We used the in vitro M cell model to study the effect of the commensal bacteria; Lactobacillus salivarius, Eschericha coli and Bacteroides fragilis, on M cell gene expression. Bacterial translocation across the gut mucosa has traditionally been based on the detection of commensals in the mesenteric lymph node. Differential rates of commensal translocation have been reported in vivo, however fewer studies have examined translocation of commensals at the level of the gut epithelial M cell. In this study we employed an in vitro M cell model to quantify translocation of various bacteria. C2BBe1 cells were differentiated into M cells and the gene expression profile and transport kinetics of different bacterial strains, namely Lactobacillus salivarius, Escherichia coli, and Bacteroides fragilis, was assessed. For comparison with M cell uptake, the THP-1 monocytic cell line was used to analyze bacterial internalization and resulting cytokine production. The commensal bacterial strains were translocated across M cells with different efficiencies; E. coli and B. fragilis translocated with equal efficiency while L. salivarius translocated with less efficiency. In contrast, L. salivarius was internalized by THP-1 cells to a higher degree than B. fragilis or E. coli and was associated with a different cytokine profile. Microarray analysis showed both common and differential gene expression amongst the bacteria and control polystyrene beads. In the presence of bacteria, but not beads, upregulated genes were mainly involved in transcription regulation and dephosphorylation, e.g. EGR1, JUN; whereas proinflammatory and stress response genes were primarily upregulated by E. coli and B. fragilis, but not L. salivarius nor beads, e.g. IL8, TNFAIP3. These results demonstrate that M cells have the ability to discriminate between different commensal bacteria and modify subsequent immune responses. C2bbe1 cells were converted to M cells (C2M) following 21 days of culture on Transwells in the presence of Raji B cells. C2M cells were co-cultured alone, Lactobacillus salivarius, Eschericha coli, Bacteroides fragilis and control beads. Total RNA was extracted and processed for Affymetrix array hybridisation