Suv39h-dependent H3K9me3 represses intact retrotransposons in mouse embryonic stem cells
Ontology highlight
ABSTRACT: Heterochromatin is required to restrict aberrant expression of retrotransposons, but it remains poorly defined due to the underlying repeat-rich sequences. We dissected Suv39h-dependent histone H3 lysine 9 trimethylation (H3K9me3) by genome-wide ChIP-sequencing in mouse embryonic stem cells (ESCs). Refined bioinformatic analyses of repeat subfamilies indicated selective accumulation of Suv39h-dependent H3K9me3 at interspersed repetitive elements that cover ~ 5% of the ESC epigenome. The majority of the ~ 8,150 intact long interspersed nuclear elements (LINEs) and endogenous retroviruses (ERVs), but only a minor fraction of the > 1.8 million degenerate and truncated LINEs/ERVs, are enriched for Suv39h-dependent H3K9me3. Transcriptional repression of these intact LINEs and ERVs is differentially regulated by Suv39h and other chromatin modifiers in ESCs but governed by DNA methylation in committed cells. These data provide a novel function for Suv39h-dependent H3K9me3 chromatin to specifically repress intact retrotransposon elements in the ESC epigenome. ChIP-seq and RNA-seq in mouse ES cells, Neural precursors and MEFs wild type and Suv39h double KO. The input for ES cells is accessioned as GSM1251941. A link to this sample can be found below.
ORGANISM(S): Mus musculus
SUBMITTER: Sarah Diehl
PROVIDER: E-GEOD-57092 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA