Project description:Bacteria possess many small noncoding RNAs whose regulatory roles in pathogenesis are little understood due to a paucity of macroscopic phenotypes in standard virulence assays. Here, we use a novel Dual RNA-seq approach for a single-step simultaneous RNA profiling in both pathogen and host to reveal molecular phenotypes of sRNAs during infection with Salmonella Typhimurium. We identify a new PhoP/Q-activated small RNA which upon bacterial internalization acts to temporally control the expression of both, invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity is shown to adjust the human response to replicating Salmonella, and have a pervasive impact on host RNA expression both inside and outside protein-coding regions including infection-specific alterations of an array of long noncoding RNAs. Our study provides a paradigm for a comprehensive RNA-based analysis of intracellular bacterial pathogens without their physical purification from a host and a new discovery route for hidden functions of pathogen genes. sRNA profiling in various cell types
Project description:Bacteria possess many small noncoding RNAs whose regulatory roles in pathogenesis are little understood due to a paucity of macroscopic phenotypes in standard virulence assays. Here, we use a novel Dual RNA-seq approach for a single-step simultaneous RNA profiling in both pathogen and host to reveal molecular phenotypes of sRNAs during infection with Salmonella Typhimurium. We identify a new PhoP/Q-activated small RNA which upon bacterial internalization acts to temporally control the expression of both, invasion-associated effectors and virulence genes required for intracellular survival. This riboregulatory activity is shown to adjust the human response to replicating Salmonella, and have a pervasive impact on host RNA expression both inside and outside protein-coding regions including infection-specific alterations of an array of long noncoding RNAs. Our study provides a paradigm for a comprehensive RNA-based analysis of intracellular bacterial pathogens without their physical purification from a host and a new discovery route for hidden functions of pathogen genes. Comparative RNA-seq (in vitro medium shift experiment)
Project description:Cells lacking Rb1 are deficient in differentiation. Loss of Kdm5a rescues myogenic differentiation, as judged by appearance of morphologically normal myotubes that display expression of late markers of differentiation. In order to better understand how Kdm5a loss rescues differentiation, we induced mouse embryonic fibroblasts (MEFs) of different genotypes to undergo myogenic differentiation and analyzed gene expression changes in wild-type, Kdm5a-/-, Rb1-/- and Kdm5a-/-; Rb1-/- cells. Rb1-/- cells stained single nucleated, did not exhibit morphological changes and increased expression of the myogenic marker MYHC. Except for Rb1-/- cells, all other cells were undergoing successful convertion into aligned multinucleated myotubes and were MYHC-positive. We obtained purified populations of myotubes for the wild-type and Kdm5a-/-; Rb1-/- cells. RNA-seq analysis of gene expression in Rb1 or Kdm5a deficient MEFs that were induced for myogenic differentiation.
Project description:We performed a massively parallel reporter assay on 2,396 genomic regions containing single nucleotide polymorphisms that are in high linkage disequilibrium with 97 lead variants from an obesity GWAS (PMID: 25673413). Regions were transfected into human SGBS preadipocytes, SGBS mature adipocytes, 3T3-L1 preadipocytes, HT22 hippocampal cells, and GT1-7 cells and assessed for enhancer activity. The processed file contains the MPRA barcodes.
Project description:Gene expression was studied in the presence or absence of Otx2 (RNAi) in the Rex1GFPd2 mouse embryonic stem cell line (parental line; E14Tg2a) in undifferentiated and differentiated states.
Project description:We report the changes in Tcrb interactome upon transitioning from DN to DP stage of thymocyte development Examination of the interactomes of Eb and Trbv5 viewpoints in RAG-deficient DN and DP thymocytes
Project description:Gene expression was studied in the presence or absence of Otx2 (RNAi) in the Rex1GFPd2 mouse embryonic stem cell line (parental line; E14Tg2a) in undifferentiated and differentiated states.
Project description:B. cenocepacia is an opportunistic human pathogen that is particularly problematic for patients suffering from cystic fibrosis (CF). In the CF lung, bacteria grow to high densities within the viscous mucus that is limited in oxygen. Pseudomonas aeruginosa, the dominant pathogen in CF patients, is known to grow and survive under oxygen-limited to anaerobic conditions by using micro-oxic respiration, denitrification and fermentative pathways. In contrast, inspection of the genome sequences of available B. cenocepacia strains suggested that B. cenocepacia is an obligate aerobic and non-fermenting bacterium. In accordance with the bioinformatics analysis, we observed that B. cenocepacia H111 is able to grow with as little as 0.1% O2 but not under strictly anoxic conditions. Phenotypic analyses revealed that H111 produced larger amounts of biofilm, pellicle and proteases under micro-oxic conditions (0.5% - 5% O2, i.e. conditions that mimic those encountered in CF lung infection), and was more resistant to several antibiotics. RNA-Seq and shotgun proteomics analyses of cultures of B. cenocepacia H111 grown under micro-oxic and aerobic conditions showed up-regulation of genes involved in the synthesis of the exopolysaccharide (EPS) cepacian as well as several proteases, two isocitrate lyases and other genes potentially important for life in micro-oxia. Oxygen regulation in Burkholderia cenocepacia was investigated using RNA-Seq of cells grown under aerobic or micro-oxic conditions.