Identification and characterization of microRNA expression in Ginkgo biloba L. leaves
Ontology highlight
ABSTRACT: High-throughput small RNA sequencing were performed to identify a large number of miRNAs and their targets in mature female and male G. biloba leaves for the first time. We ascertained that the regulatory networks of the miRNAs are involved in many different primary biological processes based on potential target designations. Our study is the first to provide useful information for uncovering the regulatory networks of miRNAs in basal gymnosperm G. biloba leaves. small RNA sequencing in female and male leaves of G. biloba
Project description:High-throughput small RNA sequencing were performed to identify a large number of miRNAs and their targets in mature G. biloba ovules. Our study is the first to provide useful information for uncovering the regulatory networks of miRNAs in basal gymnosperm G. biloba ovules. small RNAÂ sequencing in ovules of G. biloba
Project description:In this study, C. gigantea miRNAs and their target genes were investigated by extracting RNA from young roots, tender stems, young leaves, and flower buds of C. gigantea to establish a small RNA (sRNA) library and a degradome library to further sequence. This study identified 194 known miRNAs belonging to 52 miRNA families and 23 novel miRNAs. Among the miRNA families, 158 miRNAs from 27 miRNA families were highly conserved and existed in a plurality of plants. In addition, 60 different targets for 30 known families and one target for novel miRNA were identified by high-throughput sequencing and degradome analysis in C. gigantea. Our analyses showed that conserved miRNAs have higher expression levels and more family members as well as more targets than other miRNAs. Meanwhile, these conserved miRNAs were found to be involved in auxin signal transduction, regulation of transcription, and other developmental processes in plants, which will help further understanding regulatory mechanisms of C. gigantea miRNAs. The samples were collected from the young roots, tender shoots, young leaves and flower buds of wild C. gigantea growing in Jiangsu Province. TRIzol reagent (Invitrogen, USA) was used to extract the total RNAs [20]. An Illumina next-generation sequencing system, i.e. the 1 G Genome Analyzer sequencing platform, was utilized for sRNA sequencing. An Illumina HiSeq 2000 (LC Sciences, USA) was used for degradome sequencing.
Project description:The small RNA libraries from Moso bamboo (Phyllostachy heterocycla) roots and leaves were constructed by using high definition adapters . The small RNA profiles were analyzed. A collection of micro RNAs with similarity to the micro RNA entries in mirbase were discovered. The putative genomic loci of the micro RNAs were identified. Analysis of small RNA profiles from the root and leaf tissues of young Moso Bamboo seedlings
Project description:We constructed two independent small RNA libraries from leaves of mock and Cucumber mosaic virus (CMV) infected tomatoes, respectively, and sequenced with a high-throughput Illumina Solexa system. Based on sequence analysis and hairpin structure prediction, a total of 50 known miRNAs (32 families) and 568 potentially candidate miRNAs (PC-miRNAs) were firstly identified in tomato, with 12 known miRNAs and 154 PC-miRNAs supported by both the 3p and 5p strands. Comparative analysis revealed 79 miRNAs (including 15 novel tomato miRNAs) and 40 PC-miRNAs were differentially expressed between the two libraries. Among these virus responsive miRNAs, expression patters of some novel tomato miRNAs and PC-miRNAs in mock and in CMV-Fny infected tomatoes were further validated by qRT-PCR. Moreover, we revealed 563 potential targets for 66 tomato miRNAs by the recently developed degradome sequencing approach, including 124 targets for 7 new tomato miRNAs and 97 targets for 24 PC-miRNAs. Target annotation for the newly identified miRNA and PC-miRNAs indicated that they were involved in multiple biological processes, including transcriptional regulation and virus resistance. Gene ontology analysis of these target transcripts demonstrated that stress response- and photosynthesis-related genes were most affected in CMV-Fny infected tomatoes. Examination of small RNAs and their targets in mock and CMV-Fny infected tomatoes.
Project description:Most of small RNA library construction methods are based on RNA ligases, which prefer to join the molecules (small RNAs and adapters) that can anneal to each other and form a ligase favoured structure. Different platforms for next generation sequencing use different adapter sequences, causing the cloning bias. Adapters with degenerated nucleotides at the ligating ends (High Definition, HD adapters) were developed to reduce the cloning bias. However, above 90% of the cloning products is adapter dimer when the current available commercial kits and their corresponding protocols are used. Here we adopted and further improved a method demonstrated in a publically available patent (http://www.google.com/patents/WO2011056866A2?cl=en). Using the improved method, we constructed the small RNA libraries by using the total RNA of Medicago truncatula leaf tissue. The adapter dimer was significantly reduced. The small RNA sequences were also analysed. The small RNA libraries of medicago truncatula leaves were constructed by using an improved protocol where high-definition (HD) adapters were used.
Project description:MicroRNAs (miRNAs) are involved in nearly every biological process examined to date. Mounting evidence show that some spermatozoa specific miRNAs play important roles in the regulation of spermatogenesis and germ cells development, but little is known of the exact identity and function of miRNA in sperm cells or their potential involvement in spermatogenesis and germ cells development. Here, we investigated the spermatozoa miRNA profiles using illumina deep sequencing combined with bioinformatic analysis using zebrafish as a model system. Deep sequencing of small RNAs yielded 12 million raw reads from zebrafish spermatozoa. Analysis showed that the noncoding RNA of the spermatozoa included tRNA, rRNA, snRNA, snoRNA and miRNA. By mapping to the zebrafish genome, we identified 400 novel and 204 conserved miRNAs which could be grouped into 104 families, including zebrafish specific families, such as mir-731, mir-724, mir-725, mir-729 and mir-2185. We report the first characterization of the miRNAs profiling in zebrafish spermatozoa. The obtained spermatozoa miRNAs profiling will serve as valuable resources to systematically study spermatogenesis in fish and vertebrate. Examination of small RNA populations in zebrafish spermatozoa
Project description:Purpose: MicroRNAs (miRNAs) are ubiquitous components of endogenous plant transcriptome. miRNAs are small, single-stranded and ~21 nt long RNAs which regulate gene expression at the post-transcriptional level and are known to play essential roles in various aspects of plant development and growth. Previously, a number of miRNAs have been identified in potato through in silico analysis and deep sequencing approach. However, identification of miRNAs through deep sequencing approach was limited to a few tissue types and developmental stages. This study reports the identification and characterization of potato miRNAs in three different vegetative tissues and four stages of tuber development by high throughput sequencing. Results: Small RNA libraries were constructed from leaf, stem, root and four early developmental stages of tuberization and subjected to deep sequencing, followed by bioinformatics analysis. A total of 89 conserved miRNAs (belonging to 33 families), 147 potato-specific miRNAs (with star sequence) and 112 candidate potato-specific miRNAs (without star sequence) were identified. The digital expression profiling based on TPM (Transcripts Per Million) and qRT-PCR analysis of conserved and potato-specific miRNAs revealed that some of the miRNAs showed tissue specific expression (leaf, stem and root) while a few demonstrated tuberization stage-specific expressions. Targets were predicted for identified conserved and potato-specific miRNAs, and predicted targets of four conserved miRNAs, miR160, miR164, miR172 and miR171, which are ARF16 (Auxin Response Factor 16), NAM (NO APICAL MERISTEM), RAP1 (Relative to APETALA2 1) and HAIRY MERISTEM (HAM) respectively, were experimentally validated using 5M-bM-^@M-2RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends). Gene ontology (GO) analysis for potato-specific miRNAs was also performed to predict their potential biological functions. Conclusions: We report a comprehensive study of potato miRNAs at genome-wide level by high-throughput sequencing and demonstrate that these miRNAs have tissue and/or developmental stage specific expression profile. Also, predicted targets of conserved miRNAs were experimentally confirmed for the first time in potato. Our findings indicate the existence of extensive and complex small RNA population in this crop and suggest their important role in pathways involved in diverse biological processes, including tuber developmental process. Total seven (Leaf, Root, Stem, Potato Tuber stage 0(PT0),Potato Tuber stage 1(PT1),Potato Tuber stage 2(PT2),Potato Tuber stage 3(PT3) ) small RNA libraries were consctructed and sequenced by deep sequencing using Illumina GAIIx.
Project description:Here, we employed high-throughput sequencing to identify microRNAs in CMS and its maintainer fertile (MF) lines of Brassica juncea. We identified 197 known and 78 new candidate microRNAs during reproductive development of B. juncea. A total of 47 differentially expressed microRNAs between CMS and its maintainer fertile lines were discovered, according to their sequencing read number. Two samples from floral buds of CMS and MF lines.
Project description:Genetic male sterility (GMS) in cotton (Gossypium hirsutum) plays an important role in the utilization of hybrid vigor. However, the molecular mechanism of the GMS is still unclear. While numerous studies have demonstrated that microRNAs (miRNA) regulate flower and anther development, whether different small RNA regulations exist in GMS and its wild type is unclear. To investigate the global expression and complexity of small RNAs during cotton anther development, three small RNA libraries were constructed from the anthers of three development stages each from fertile wild type (WT) and its GMS mutant cotton. Examination of different miRNA profiles in 2 lines.
Project description:Most of small RNA library construction methods are based on RNA ligases, which prefer to join the molecules (small RNAs and adapters) that can anneal to each other and form a ligase favoured structure. Different platforms for next generation sequencing use different adapter sequences, causing the cloning bias. Adapters with degenerated nucleotides at the ligating ends (High Definition, HD adapters) were developed to reduce the cloning bias. However, above 90% of the cloning products is adapter dimer when the current available commercial kits and their corresponding protocols are used. Here we adopted and further improved a method demonstrated in a publically available patent (http://www.google.com/patents/WO2011056866A2?cl=en). Using the improved method, we constructed the small RNA libraries by using the total RNA of chondrosarcoma cell line. The adapter dimer was significantly reduced. The small RNA sequences were also analysed. The small RNA libraries of cultured chondrosarcoma cell line were constructed by using an improved protocol where high-definition (HD) adapters were used.