Transcriptome changes following loss of Apc in the intestine
Ontology highlight
ABSTRACT: Nearly all colorectal cancers have dysregulated Wnt signalling, predominantly through the mutation of the Apc (Adenomatous Polyposis Coli) gene. Therefore it is of vital importance to elucidate the key Wnt target genes in intestinal cells in vivo. We have used a novel inducible cre-lox based murine system (designated ApcFlox) to investigate the consequences of perturbation of Wnt signalling following inactivation of Apc in vivo within 100% of the intestinal epithelium. We have employed microarray analysis at 3 time points within our ApcFlox system (Day 3 prior to the onset of phenotype, day 4 the establishment of the phenotype and day 5 gross phenotype of altered proliferation, differentiation and migration) and from adenomas arising in the ApcMin/+ background allowing us characterise Wnt/beta-catenin target genes based on their expression profiles during different stages of intestinal tumourigenesis. Furthermore, we have employed microarray analysis using livers from our ApcFlox system and have demonstrated that there is very little overlap in the Wnt target genes induced by Apc loss in the liver and the intestine. More importantly, we have been able to determine a novel set of putative Wnt/beta-catenin target genes which are upregulated at both early and late stages of tumourigenesis in the intestine and may represent novel therapeutic targets in colon cancer. Samples were collected from Genetcially modified mice of the genotypes indicated on the sample records. Where appropriate, gene recombination was induced using IP administration of beta-napthoflavone. Cohorts of samples were used to compare the affects of APC loss in the small intestine at three time points (and compared to matched control samples in which the gene was not recombined). Furthermore, these samples were compared to colonic polyps (and normal colon) taken from the Apcmin Mouse.
ORGANISM(S): Mus musculus
SUBMITTER: Karen Reed
PROVIDER: E-GEOD-65461 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA