Microarray analysis of skeletal muscle in PGC1α transgenic mice
Ontology highlight
ABSTRACT: Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC1α) is a coactivator of various nuclear receptors and other transcription factors that shows increased expression in skeletal muscle during exercise. In skeletal muscle, PGC1α is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Several isoforms of PGC1α mRNA have recently been identified. PGC1α-a is a full-length isoform of PGC1α that was the first to be isolated. PGC1α-b is another isoform of PGC1α, which is considered to be similar in function to PGC1α-a, differing by only 16 amino acids at the amino terminus. We have previously generated independent lines of transgenic mice that overexpress PGC1α-a or PGC1α-b in skeletal muscle. The microarray data shows that energy metabolism-related pathways such as the TCA cycle, branched-chain amino acid metabolism, purine nucleotide pathway, and malate–aspartate shuttle are activated in PGC1α transgenic mice compared with wild-type mice. For microarray analysis, RNA was isolated from the gastrocnemius skeletal muscle of wild-type control mice (12 weeks of age) as well as transgenic mice [PGC1α-a (E) (Miura et al., J. Biol. Chem. 278:31385-90, 2003), 12 weeks of age; PGC1α-b (02-1) (Miura et al., Endocrinology 149:4527-33, 2008), 14 weeks of age; and PGC1α-b (03-2) (Miura et al., Endocrinology 2008), 14 weeks of age]. Samples from wild-type and transgenic mice (N = 5 for each group) were pooled before use.
ORGANISM(S): Mus musculus
SUBMITTER: Yukino Hatazawa
PROVIDER: E-GEOD-67049 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA