Project description:We show that Glis3 is expressed in gonocytes, SSCs and SPCs, but not in differentiated spermatogonia or subsequent stages of spermatogenesis nor in Sertoli or Leydig cells. We further demonstrate that Glis3-deficiency causes a severe impairment in spermatogenesis in mice. Although the number of gonocytes was slightly diminished in Glis3KO testis, the number undifferentiated, PLZF+ spermatogonia was dramatically reduced leading to a virtual block in the progression of spermatogenesis. Gene expression profiling showed that the expression of a number of genes associated with self-renewal and differentiation of spermatogonial cells was significantly decreased in 1-week-old Glis3KO2 testis. These included a set of GDNF-dependent genes, such as Etv5, Bcl6b, Lhx1, Brachyury, Id4, and Pou3f1, and GDNF-independent genes, such as FoxO1, Oct4, and Zbtb16. Impairment of the nuclear localization of FoxO1 may be in part responsible for the reduced expression of Ret, Lhx1, and Sall4 in Glis3KO2 testis. Our study identifies Glis3 as a novel and critical regulator of early stages of spermatogenesis. Testis total RNAs were purified from 4 WT and 4 Glis3KO2 at 1 week old age, and 3WT and 3 Glis3KO2 at 3 week-old age. Then the samples were applied to Agilent mouse genome chip.
Project description:We show that Glis3 is expressed in gonocytes, SSCs and SPCs, but not in differentiated spermatogonia or subsequent stages of spermatogenesis nor in Sertoli or Leydig cells. We further demonstrate that Glis3-deficiency causes a severe impairment in spermatogenesis in mice. Although the number of gonocytes was slightly diminished in Glis3KO testis, the number undifferentiated, PLZF+ spermatogonia was dramatically reduced leading to a virtual block in the progression of spermatogenesis. Gene expression profiling showed that the expression of a number of genes associated with self-renewal and differentiation of spermatogonial cells was significantly decreased in 1-week-old Glis3KO2 testis. These included a set of GDNF-dependent genes, such as Etv5, Bcl6b, Lhx1, Brachyury, Id4, and Pou3f1, and GDNF-independent genes, such as FoxO1, Oct4, and Zbtb16. Impairment of the nuclear localization of FoxO1 may be in part responsible for the reduced expression of Ret, Lhx1, and Sall4 in Glis3KO2 testis. Our study identifies Glis3 as a novel and critical regulator of early stages of spermatogenesis. Thy1+ cells were isolated from 3 WT and 3 Glis3KO2 testis at postnatal day 4, and total RNAs were purified from them. Then the samples were applied to Agilent mouse genome chip.
Project description:Glis3 is expressed in pancreatic beta and PP cells. To identify down stream target genes of Glis3, we performed microarray analysis using pancreas total RNAs from 1 week-old WT and Glis3KO2 mice. insulin and pancreatic polypeptide (Ppy) was significantly decreased together with several other β cell markers, Glut2 and MafA by microarray analysis. Immunohistochemistry, QRT-PCR, and transmission electron microscopy indicated that postnatal Glis3KO2 pancreas still contains a large population of β cells that express Pdx-1, Nkx6.1, and Isl-1; however, insulin production and secretory granules were greatly reduced in these cells. In addition, chromogranin A (ChgA) and Urocortin 3, which are associated with mature β cells, was dramatically decreased in Glis3KO2 pancreas. These observations suggest that Glis3 plays a critical role in the maturation of pancreatic β cell phenotype. Pancreatic total RNAs were purified from 4 WT and 4 Glis3KO2 at 1 week old age. Then the samples were applied to Agilent mouse genome chip.
Project description:The aim of our study is to determine the functions of histone deacetylases (HDACs) 1 and 2 in Schwann cells during postnatal development of the peripheral nervous system (PNS). Schwann cells are the myelinating glial cells of the PNS. At birth, mouse sciatic nerves mature in 2 subsequent phases: 1/ big caliber axons get sorted into a 1 to 1 relationship with Schwann cells, 2/ Schwann cells build a myelin sheath around sorted axons. In mice where both HDAC1 & HDAC2 have been specifically knocked out in Schwann cells, both phases are impaired. HDACs are chromatin remodeling enzymes, they can thus alter gene expression directly. We want to identify which genes controlled by HDAC1 and HDAC2 in Schwann cells are necessary for the maturation of sciatic nerves. Because HDAC1 and HDAC2 can compensate for each other loss to some extend, we will first analyze changes of gene expression in HDAC1/HDAC2 double KO animals. We expect to gain critical insights into the molecular mechanisms controlling Schwann cell differentiation and myelination. This knowledge is of key importance for the success of regenerative medicine in peripheral neuropathies, nerve tumors, and transplantation paradigms in non-regenerative CNS lesions and in large PNS injuries. 3 double knockout mutants for HDAC1 and HDAC2 and 3 control littermates were analyzed. Tissues analyzed: sciatic nerves of 2 day-old mouse pups
Project description:Zone 1 and zone 3 areas were captured from mouse liver sections by laser capture microdissection Total RNA was isolated and gene expression profiles were determined using microarrays Six C3H/HeNCrlBR (C3H) mice, 3 male and 3 female mice were used. They were not treated in any way.
Project description:BRG1-SWI/SNF complex is an important chromatin remodeling complex that involved in various biological processes. Here we described the genome-wide binding of histone acetylation upon BRG1 depletion in mouse embryonic stem cells. Mouse embryonic stem cells were treated with either scrambled siRNA or siRNA against BRG1 for 48 h, and each treatment has three replicates.
Project description:BRG1-SWI/SNF complex is an important chromatin remodeling complex that involved in various biological processes. Here we described the genome-wide binding of histone acetylation upon BRG1 depletion in human embryonic stem cells. Human embryonic stem cells were treated with either scrambled siRNA or siRNA against BRG1 for 48 h, and each treatment has three replicates.
Project description:CD44 expression has been shown to be enhanced in the liver and white adipose tissue (WAT) during obesity, suggesting a possible regulatory role for CD44 in metabolic syndrome. To study this hypothesis, we compared the gene expression profiles in liver and in WAT between WT and CD44 knockout (CD44KO) mice fed a high-fat diet (HFD) for 21 weeks. This analysis demonstrated that several genes associated with triglyceride synthesis and accumulation, including Mogat2, Cidea, Cidea, Apoa4, and Elovl7, were decreased in the livers of CD44KO mice compared to WT mice. Many genes encoding pro-inflammatory chemokines and chemokine receptors also were decreased in the livers of CD44KO mice. Analysis with WAT showed that genes associated with triglyceride accumulation, including Fasn, Elovl6 and Mogat2, were increased in WAT of CD44KO(HFD) mice compared to WT(HFD) mice. Moreover, many genes associated with inflammation, including cytokines (Cxcl14, Cxcl12, Il33, and Il2), cytokine receptors (Ccr1, Il6ra, Il10rb), trypases (Tpsb2, Tpsab1, Tpsg1), and cellular matrix proteins (Integrin ?4 (Itga4), ItgaM, Itgb2), were decreased in WAT of CD44(HFD) compared to WT(HFD) mice. This study indicates that CD44 plays a critical role in regulating several aspects of metabolic syndrome. Liver and white adipose tissue (WAT) total RNAs were purified from 5 WT and 5 CD44 knockout mice fed with a high-fat diet for 21 weeks. Then, samples were applied on Agilent mouse genome chips.
Project description:To understand the mechanism of extended lifespan in hNAG-1 mice, we used whole genome microarray analysis to examine differential gene expression in abdominal WAT in hNAG-1 mice. Differential category expression analysis may show significant differences between hNAG-1 mice and WT mice in key pathways in the regulation of metabolism and mammalian lifespan. In addition, To explore the reason why hNAG-1 mice are leaner than Wt littermates. A total of 6 animals from each genotype were used and WAT was extacted from each mouse, we then pooled two sample as one sample for each genotype to be used in microarray experiment.