Project description:Circular RNAs (circRNAs) are widespread circular forms of non-coding RNAs with largely unknown function. Because stimulation of mammary cells with the epidermal growth factor (EGF) leads to dynamic changes in the abundance of both coding and non-coding RNA molecules, and culminates in the acquisition of a robust migratory phenotype, this cellular model might disclose functions of circRNAs. Here we show that circRNAs of EGF-stimulated mammary cells are stably expressed, while mRNAs and micro-RNAs change within minutes. In general, the circRNAs we detected are relatively long-lived and weakly expressed. Interestingly, they are almost ubiquitously co-expressed with the corresponding linear transcripts, and the respective, shared promoter regions are more active compared to genes producing linear isoforms only. These findings imply that altered abundance of circRNAs, unlike changes in the levels of other RNAs, might not play critical roles in signaling cascades and downstream transcriptional networks that rapidly commit cells to specific outcomes. Histone 3 Lysine 27 Acetylation â 2 replicates
Project description:Circular RNAs (circRNAs) are widespread circular forms of non-coding RNAs with largely unknown function. Because stimulation of mammary cells with the epidermal growth factor (EGF) leads to dynamic changes in the abundance of both coding and non-coding RNA molecules, and culminates in the acquisition of a robust migratory phenotype, this cellular model might disclose functions of circRNAs. Here we show that circRNAs of EGF-stimulated mammary cells are stably expressed, while mRNAs and micro-RNAs change within minutes. In general, the circRNAs we detected are relatively long-lived and weakly expressed. Interestingly, they are almost ubiquitously co-expressed with the corresponding linear transcripts, and the respective, shared promoter regions are more active compared to genes producing linear isoforms only. These findings imply that altered abundance of circRNAs, unlike changes in the levels of other RNAs, might not play critical roles in signaling cascades and downstream transcriptional networks that rapidly commit cells to specific outcomes. Detection of circRNAs from RNA-Seq â triplicate
Project description:Alternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery. HepG2 and K562 cell lines were stably transfected with plasmids containing siRNA designed to specifically knock down ADAR expression (ADAR KD). This in order to examine how ADAR affects alternative splicing globally.
Project description:Alternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery. HepG2 and K562 cell lines were stably transfected with plasmids containing siRNA designed to specifically knock down ADAR expression (ADAR KD). This in order to examine how ADAR affects alternative splicing globally.
Project description:NK cells are innate immune cells that recognize and kill foreign, virally-infected and tumor cells without the need for prior immunization. NK expansion following viral infection is IL-2 or IL-15-dependent. To identify Runx3 responsive genes, NK cells were isolated from spleen of WT and Runx3-/- mice . Ten samples (5 WT and 5 Runx3-/-) of freshly isolated NK cells were separately obtained from individual mice. Cells were cultured for 7 days with IL-2 or IL-15.
Project description:To search for host factors regulating SARS-COV-2 infection, we performed a genome-wide loss-of-function CRISPR/Cas9 screen in haploid human ESCs. The regulators were identified by the quantification of enrichment of their mutant clones within a pooled loss-of-function library upon SARS-COV-2 infection.
Project description:RUNX1 transcription factor (TF) is a key regulator of megakaryocytic development and when mutated is associated with familial platelet disorder and predisposition to acute myeloid leukemia (FPD-AML). We used mice lacking Runx1 specifically in megakaryocytes (MKs) to characterize the Runx1-mediated transcriptional program during advanced stages of MK differentiation. Gene expression and chromatin-immunoprecipitation-sequencing (ChIP-seq) of Runx1 and p300 identified functional Runx1-bound MK enhancers. Runx1/p300 co-bound regions showed significant enrichment in genes important for MK and platelet homeostasis. Runx1-bound regions were highly enriched in RUNX and ETS motifs and to a lesser extent in GATA motif. The data provides the first example of genome-wide Runx1/p300 occupancy in maturating FL-MK, unravels the Runx1-regulated program controlling MK maturation in vivo and identifies its bona fide regulated genes. It advances our understanding of the molecular events that upon mutations in RUNX1 lead to the predisposition to familial platelet disorders and FPD-AML. Gene expression profiles of mature megakaryocytes taken from fetal livers of megakaryocyte-specific Runx1 knockout mice, using Runx1F/F/Pf4-Cre mice versus control (WT) mice.
Project description:Purpose: To determine SUMO1 and SUMO2 chromatin profile in a static and dynamic manner in BMDC before and after LPS stimulation, and to determine RNAPolII chromatin occupancy in sumoylation-deficient BMDC compared to wild-type cells. Methods: SUMO1, SUMO2 and RNAPolII chromatin profiles were determined by sequencing BMDC chromatin immunoprecipitated with antibodies specific for SUMO1, SUMO2 and RNAPolII before and after LPS stimulation. Results: We show dynamic occupancy of three distal sites upstream of Ifnb1 gene by SUMO1 and SUMO2, as well as increased RNAPolII recruitment on selected genes. Conclusions: SUMO acts as a regulator of inflammatory and anti-viral gene programs. A study of SUMO and RNAPolII chromatin profile in Bone Marrow derived Dendritic Cells.
Project description:Expresssion data in K562 cells, before and after TPA induction and including a RUNX1 knockout construct or a control structure Examination of gene expression in K562 cells, before and following TPA induction and with or without a RUNX1 KO construct or control