Targeting β-catenin overcomes resistance to MEK inhibitor in PIK3CA mutant colon cancer
Ontology highlight
ABSTRACT: Mitogen-activated protein kinases (MEK 1/2) are central components of the RAS signaling pathway and attractive targets for cancer therapy. However, PIK3CA mutation, which commonly co-occurs with KRAS mutation, offered resistance to MEK inhibitor through activation of PI3K-AKT signaling. We identified a gene that cooperates with MEK inhibitors to forcefully treat PIK3CA mutant colon cancer cells. -catenin, a key molecule of the WNT pathway, emerged as a candidate by protein/Ab Chip array. MEK inhibitor treatment led to a decrease in -catenin in PIK3CA wild-type colon cancer cells but not in PIK3CA mutant colon cancer cells. Tumor regression was promoted by a combination of MEK inhibitor and NVP-TNS656, which targets the WNT pathway. Furthermore, combined inhibition of MEK and -catenin by NVP-TNS656 promoted tumor regression in colon cancer patient-derived xenograft (PDX) models expressing mutant PIK3CA. Taken together, we propose that inhibition of the WNT pathway, particularly -catenin, may bypass resistance to MEK inhibitor in human PIK3CA mutant colon cancer. Additionally, -catenin is a potential PD marker of MEK inhibitor resistance. In the study, we identified and evaluated biomarker for response to MEK inhibitor on colon cancer cells.
ORGANISM(S): Homo sapiens
SUBMITTER: Dong-Hoon Jin
PROVIDER: E-GEOD-71981 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA