Titered FOXO overexpression maintains cardiac proteostasis and ameliorates age-associated functional decline
Ontology highlight
ABSTRACT: Heart performance declines with age. Reduced protein quality control (PQC) due to decreased function of the ubiquitin/proteasome system (UPS), autophagy, and/or chaperone-mediated protein refolding is a likely contributor to age-associated cardiac performance decline. The transcription factor FOXO participates in the regulation of genes involved PQC and a host of other processes. Here, the effect of cardiac-restricted dFOXO overexpression was investigated in Drosophila, a genetically pliable and rapidly aging model. Modest dFOXO overexpression in the heart was protective, ameliorating functional decline with age. Increased expression of genes associated predominantly with UPS relative to other PQC components accompanied dFOXO-mediated cardioprotection, which was corroborated by a significant decrease in ubiquitinated myocardial proteins. In agreement, knockdown of upregulated UPS components seemingly induced premature aging. Despite these findings, excessive dFOXO overexpression or knockdown proved detrimental to heart function and overall organismal development. This study highlights Drosophila as a model of cardiac aging and FOXO as a tightly-regulated mediator of proteostasis and heart performance over time. Two replicates of 4 different samples were analyzed. Two of these samples were controls (GMH5 x yw 1 week and GMH5 x yw 5 week).
ORGANISM(S): Drosophila melanogaster
SUBMITTER: Alexander Zambon
PROVIDER: E-GEOD-73205 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA