Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation [adults]
Ontology highlight
ABSTRACT: Chronic early life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming, we treated zebrafish embryos with cortisol and examined the effects on adults. In adulthood, the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. 30 samples total were analyzed. 9 caudal fins samples (0, 2 and 4dpa), 3 blood samples and 3 muscle samples from adults exposed to DMSO control as embryos. 9 caudal fins samples (0, 2 and 4dpa), 3 blood samples and 3 muscle samples from adults exposed to cortisol (1 micromolar) as embryos.
ORGANISM(S): Danio rerio
SUBMITTER: Benjamin King
PROVIDER: E-GEOD-80260 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA