Project description:Full-Length cDNA transcriptome (Iso-Seq) data sequenced on the PacBio Sequel system using 2.1 chemistry. Multiplexed cDNA library of 12 samples (3 tissues x 4 strains). Tissues: root, embryo, endosperm. Strains: B73, Ki11, B73xKi11, Ki11xB73.
Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of DNA methylations in Burkholderia pseudomallei. SMRTbell™ sequencing
Project description:Iso-Seq (PacBio) sequencing was performed to generate a reference library of H. perforatum. We generated genome-wide transcriptome data from in vitro cell suspensions and shoot cultures of H. perforatum.
Project description:In this study, we compared the transcriptome map of maize and sorghum using PacBio single-molecule long-read sequencing from multiple matched tissues in each species. Maize and sorghum are both important crops with similar overall plant architectures, but they have key differences, especially in regard to their inflorescences. To better understand these two organisms at the molecular level, we compared the transcriptional profiles of both protein-coding and non-coding transcripts in matched tissues using large-scale single-molecule sequencing from 130 RSII cells and 5 Sequel cells, as well as deep short-read RNA sequencing. The use of multiple size-fractionated libraries (<1 kb, 12 kb, 23 kb, 35 kb, and >5 kb) enhanced our capture of non-redundant transcripts in these tissues.
Project description:Large-scale sequencing of RNAs from individual cells can reveal patterns of gene, isoform and allelic expression across cell types and states. However, current single-cell RNA-sequencing (scRNA-seq) methods have limited ability to count RNAs at allele- and isoform resolution, and long-read sequencing techniques lack the depth required for large-scale applications across cells. Here, we introduce Smart-seq3 that combines full-length transcriptome coverage with a 5’ unique molecular identifier (UMI) RNA counting strategy that enabled in silico reconstruction of thousands of RNA molecules per cell. Importantly, a large portion of counted and reconstructed RNA molecules could be directly assigned to specific isoforms and allelic origin, and we identified significant transcript isoform regulation in mouse strains and human cell types. Moreover, Smart-seq3 showed a dramatic increase in sensitivity and typically detected thousands more genes per cell than Smart-seq2. Altogether, we developed a short-read sequencing strategy for single-cell RNA counting at isoform and allele-resolution applicable to large-scale characterization of cell types and states across tissues and organisms.
Project description:2 samples have been prepared for ISO-seq sequencing. CD34+ blast cells from 5 MDS patients before 5-AZA treatment (GEO531A16, GEO531A13, GEO531A5, GEO531A11, GEO531A3) were pooled to generate one sample and 2 AML non-treated and 2 CMML non-treated cells (GEO531A2, GEO531A9, GEO531A6, GEO531A7) were pooled for second sample.
Project description:BackgroundSeveral mechanisms including reduced CCR5 expression, protective HLA, viral restriction factors, broadly neutralizing antibodies, and more efficient T-cell responses, have been reported to account for HIV control among HIV controllers. However, no one mechanism universally accounts for HIV control among all controllers. In this study we determined whether reduced CCR5 expression accounts for HIV control among Ugandan HIV controllers. We determined CCR5 expression among Ugandan HIV controllers compared with treated HIV non-controllers through ex-vivo characterization of CD4 + T cells isolated from archived PBMCs collected from the two distinct groups.ResultsThe percentage of CCR5 + CD4 + T cells was similar between HIV controllers and treated HIV non-controllers (ECs vs. NCs, P = 0.6010; VCs vs. NCs, P = 0.0702) but T cells from controllers had significantly reduced CCR5 expression on their cell surface (ECs vs. NCs, P = 0.0210; VCs vs. NCs, P = 0.0312). Furthermore, we identified rs1799987 SNP among a subset of HIV controllers, a mutation previously reported to reduce CCR5 expression. In stark contrast, we identified the rs41469351 SNP to be common among HIV non-controllers. This SNP has previously been shown to be associated with increased perinatal HIV transmission, vaginal shedding of HIV-infected cells and increased risk of death.ConclusionCCR5 has a non-redundant role in HIV control among Ugandan HIV controllers. HIV controllers maintain high CD4 + T cells despite being ART naïve partly because their CD4 + T cells have significantly reduced CCR5 densities.
Project description:Unique Individuals who exhibit either suppressive HIV-1 control, or the ability to maintain low viral load set-points and preserve their CD4+ T cell counts for extended time periods in the absence of antiretroviral therapy, are broadly termed HIV-1 controllers. We assessed the extent to which black South African controllers (n=9), differ from uninfected healthy controls (HCs, n=22) in terms of lymphocyte and monocyte CCR5 expression (density and frequency of CCR5-expressing cells), immune activation as well as peripheral blood mononuclear cell (PBMC) mitogen-induced chemokine/cytokine production. In addition, relative CD4+ T cell CCR5 mRNA expression was assessed in a larger group of controllers (n=20) compared to HCs (n=10) and HIV-1 progressors (n=12). Despite controllers having significantly higher frequencies of activated CD4+ and CD8+ T cells (HLA-DR+) compared to HCs, CCR5 density was significantly lower in these T cell populations (P=0.039 and P=0.064, respectively). This lower CCR5 density was largely attributable to controllers with higher VLs (>400 RNA copies/ml). Significantly lower CD4+ T cell CCR5 density in controllers was maintained (P=0.036) when HCs (n=12) and controllers (n=9) were matched for age. CD4+ T cell CCR5 mRNA expression was significantly less in controllers compared to HCs (P=0.007) and progressors (P=0.002), whereas HCs and progressors were similar (P=0.223). The levels of soluble CD14 in plasma did not differ between controllers and HCs, suggesting no demonstrable monocyte activation. While controllers had lower monocyte CCR5 density compared to the HCs (P=0.02), significance was lost when groups were age-matched (P=0.804). However, when groups were matched for both CCR5 promoter haplotype and age (n=6 for both) reduced CCR5 density on monocytes in controllers relative to HCs was highly significant (P=0.009). Phytohemagglutinin-stimulated PBMCs from the controllers produced significantly less CCL3 (P=0.029), CCL4 (P=0.008) and IL-10 (P=0.028) compared to the HCs, which was largely attributable to the controllers with lower VLs (<400 RNA copies/ml). Our findings support a hypothesis of an inherent (genetic) predisposition to lower CCR5 expression in individuals who naturally control HIV-1, as has been suggested for Caucasian controllers, and thus, likely involves a mechanism shared between ethnically divergent population groups.