Repeated systemic challenge with lipopolysaccharides induces dopaminergic neurodegeneration in the brain by activation of the complement-phagosome pathway
Ontology highlight
ABSTRACT: Systemic inflammatory reactions mediated by chronic infections activate microglia in the central nervous system (CNS) and have been postulated to exacerbate neurodegenerative diseases. We now demonstrate in vivo that repeated systemic challenge of mice with bacterial lipopolysaccharides (LPS) maintains an elevated microglial inflammatory response and triggers neurodegeneration. Repeated chronic intraperitoneal application of LPS over four consecutive days induced loss of dopaminergic neurons in the substantia nigra, a process that was accompanied by decreased levels of dopamine in the striatum. In contrast, total cumulative LPS dose given intraperitoneally within a single acute application did not induce a decrease in dopamine levels nor neurodegeneration. Mice that received repeated systemic LPS application showed increased microglial activation, elevated production of proinflammatory cytokines and activation of the classical complement and its associated phagosome pathway in the brain. Loss of dopaminergic neurons induced by repeated systemic LPS application was rescued in complement C3 deficient mice, confirming an involvement of the complement system in neurodegeneration. Thus, our data demonstrate that repeated systemic exposure to bacterial LPS induces a microglial phagosomal inflammatory response, leading to complement-dependent damage of dopaminergic neurons.
ORGANISM(S): Mus musculus
SUBMITTER: Arnaud Muller
PROVIDER: E-MTAB-1770 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA