Project description:Tau (MAPT) is a microtubule-associated protein causing frequent neurodegenerative diseases or inherited frontotemporal lobar degenerations. Emerging evidence for non-canonical functions of Tau in DNA protection and P53 regulation suggests its involvement in cancer. Indeed, Tau expression correlates with cancer-specific survival or response to microtubule therapeutics. These data may imply common molecular pathways involved in the pathogenesis of neurodegenerative disorders and cancer. To bring new evidence that Tau represents a key protein in cancer, we present an in silico pan-cancer analysis of MAPT transcriptomic profile in over 11000 clinical samples and over 1300 pre-clinical samples provided by the TCGA and the DEPMAP datasets respectively. We completed this analysis by exploring a possible interplay of MAPT with wild-type or mutated P53. Then, we calculated the impact of MAPT expression on clinical outcome and drug response. Overall, the results support a relevant role of the MAPT gene in several cancer types, although the contribution of Tau to cancer appears to very much depend on the cellular context.
Project description:Human brain development is a complex process involving neural proliferation, differentiation, and migration which are directed by many essential cellular factors and drivers. Here, using the NetBID2 algorithm and developing human brain RNA sequencing(RNA-Seq) dataset, we identified synaptotagmin-like 3(SYTL3) as one of the top drivers of early human brain development. Interestingly, SYTL3 exhibited high activity but low expression in both early developmental human cortex and human embryonic stem cell(hESC)-derived neurons. Knockout of SYTL3(SYTL3 -KO) in human neurons or knockdown of Sytl3 in embryonic mouse cortex markedly promoted neuronal migration. Besides, SYTL3-KO caused an abnormal distribution of deep-layer neurons in brain organoids and reduced presynaptic neurotransmitter release in hESC-derived neurons. We further demonstrated that SYTL3-KO- accelerated neuronal migration was modulated by high expression of matrix metalloproteinases. Together, based on bioinformatics and biological experiments, we identified SYTL3 as a novel regulator of cortical neuronal migration in human and mouse developing brains.
Project description:Purpose: This study aimed at exploring the deregulated genes in setd2 knockout mESCs compared with wt, more particularly to find the mechanism controlled by setd2,which was required for endoderm differentiation. Methods: Setd2 wt and ko mESCs were generated by deep sequencing, using Illumina GAIIx. Using Avadis NGS (version:1.3) software to analyze the sequence reads that passed quality filter to acquire the expression level of all genes. qRT–PCR validation was performed usingSYBR Green assays. Results: Using an optimized data analysis workflow, we mapped about 80 million sequence reads per sample to the mouse genome (build mm9) and identified 17,827 transcripts in the sted2 wt and ko mESCs. About 2,516 genes were deregulated in setd2 ko mESCs, more than 10 genes were validated using qRT-PCR. Conclusions: Through RNA-seq,we noticed that a subset of genes that related to MAPK signaling pathways were down-regulated in ko mESCs. This provided a bridge to connect setd2 and mESCs endoderm differentiation. One wt and one ko mESCs were generated by deep sequencing, using Illumina GAIIx.
Project description:Human acute myeloid leukemia cell lines OCI-AML2 and OCI-AML3 were used in a CRISPR/Cas9-mediated approach to specifically target DDX3X’s gene sequences encoding the RNA binding domain of the helicase. DDX3X RNA binding domain is bipartite in the two halves of the helicase core. sgRNAs were designed to target both halves of the domain (named RNA binding domain A and B – RBDA and RBDB). We performed RNA-seq to observe the gene expression changes in both OCI-AML2 and OCI-AML3 cell lines following the not-combined CRISPR/Cas9 –mediated targeting of both regions of the DDX3X RNA binding domain. Control CRISPR/Cas9 performed with no sgRNA expressing vector (named “empty vector”) was performed in both cell lines. The latter condition was used as a control for gene expression changes analysis, for each cell line.
Project description:SETD2/HYPB has been known as a histone H3K36 specific methyltransferase. However, its roles in physiology such as development and cellular function remain unclear. In this study, using mESCs as cellular model, we show that Setd2 mainly regulates differentiation of murine embryonic stem cells (mESCs) towards primitive endoderm. This study aimed at exploring how did Setd2 regulate primitive endoderm. differentiation. We used microarrays to detail the global programme of gene expression controled by setd2, which is required for endoderm differentiation. Wild type and Setd2 knockout mESCs were selected for RNA extraction and hybridization on Affymetrix GeneChip® mouse genome 430 2.0 arrays. We sought to obtain some deregulated genes, which were required for primitive endoderm differentiation. For comparison, three biological repeats of each were performed.
Project description:This study describes the transcriptome profiling of: 1) mouse ES cells and EpiSCs in LIF/serum-free (KSR) medium; 2) E14Tg2a (E14) ES cells in LIF/Serum with or without MM401 treatment; 3) rES reverted form EpiSC by MM401/LIF KSR treatment at P6, P30. RNA-Seq profiling on mouse pluripotent cells. Biological duplicates of each sample are labled as rep1/2.
Project description:LIS1 immunoprecipitation in nuclear and cytoplasmic fractions of LIS1 Floxed/-, OE and WT embryonic stem cells. To identify AGO2 dependent and independent interactions LIS1 was immunoprecipitated in AGO1-4 knockout and doxycycline induced AGO2 mouse embryonic stem cells.