ABSTRACT: To analysis gene expression of lipid metabolism regulation between salmon families with different estimated breeding value of lipid content in muscle
Project description:Farmed and wild Atlantic salmon was given either vegetable oil (low DHA and EPA) feed or fish oil (high in DHA and EPA) feed or phospholipid (high in phospholipid) feed from start of feeding. We sampled and RNAseq two tissues (pyloric caeca and liver) on day 0, day 48, day 65 and day 94 after initial feeding.
Project description:The present study used CRISPR/Cas9 technology to generate two knockout strains of salmon by mutating 1) all fads genes simultaneously (delta-5fad, delta-6fad-a, delta-6fad-b and delta-6fad-c), and 2) delta-6fad-b and delta-6fad-c genes. Liver was taken and RNA-seq was used.
Project description:Farmed Atlantic salmon was given either a 6 % cellulose diet, a diet containing 6 % shrimp shell chitin or a diet containing 6 % chitin from black soldier fly larvae for a period of 4 weeks. The fish were split into six tanks at the beginning of the experiment; six fish per tank and two tanks per diet. RNA from stomach and pyloric caeca from four fish given each diet was sequenced.
Project description:The anadromous Atlantic salmon undergo preparatory physiological transformations before seawater entry, referred to as smoltification. Little is known about the photoperiod-influence and genome regulatory processes driving smoltification such as the large scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. To shed light on this, we performed a smoltification trial using contrasting photoperiod regimes and generate a transcriptome data from livers throughout smoltification and after seawater transfer. In this experiment two groups of Atlantic salmon were reared for a total of 46 weeks from the parr stage, through smoltification, and seawater transfer. After 21 week from first feeding, the experiment group was given artificial winter photoperiod (8 hours light, 16 hours dark) for 8 weeks to induce smoltification before returning to constant light. The second control group received constant light throughout the experiment. Liver tissue was sampled from individuals first at week 1, 21 weeks after first feeding, then again at week 10, after the winter period, at week 19, after the expected smoltification time, and lastly at week 25, after transfer to seawater.
Project description:The anadromous Atlantic salmon undergo preparatory physiological transformations before seawater entry, referred to as smoltification. Little is known about the photoperiod-influence and genome regulatory processes driving smoltification such as the large scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. To shed light on this, we performed a smoltification trial using contrasting photoperiod regimes and generate ATAC-seq data from livers throughout smoltification and after seawater transfer to assess the differences in chromatin accessibility. In this experiment Atlantic salmon were reared for a total of 46 weeks from the parr stage, through smoltification, and seawater transfer. After 21 week from first feeding, the group was given artificial winter photoperiod (8 hours light, 16 hours dark) for 8 weeks to induce smoltification before returning to constant light. Liver tissue was sampled from individuals first at week 1, 21 weeks after first feeding, then again at week 10, after the winter period, at week 19, after the expected smoltification time, and lastly at week 25, after transfer to seawater.
Project description:Capelin (Mallotus villosus) is one of the important fish species in the arctic marine foodweb that could be vulnerable to contaminant exposure from offshore petroleum related activities. The study was conducted to map transcriptome responses in capelin liver slice culture exposed to benzo[a]pyrene (BaP). BaP is a polyaromatic hydrocarbon (PAH) which is among the most toxic compounds found in crude oil. Ex vivo liver slices culture was performed under 10 µM BaP exposure for 72 h and transcriptome analysis (RNA-seq) analysis was performed to characterize de novo transcriptome of the liver and identify genes responding to BaP exposure.
Project description:Transcripts of the gill epithelium from three different stocks of Atlantic salmon (Salmo salar) migrating from freshwater river to lake (Saimaa stock, SS), brackish water (Neva stock, NS) or seawater (Teno stock, TS) were compared at three successive developmental stages (parr, smolt and postsmolt) using the 16K GRASP cDNA microarray platform.
Project description:The effect of different diets (i.e. fish oil based vs vegetable oil based) on liver transcription profiles over the life history stages (freshwater and marine phases) of cultured Atlantic salmon (Salmo salar) were explored. Two groups of fish were raised from first feeding on different lipid containing diets; a) the standard 100% fish oil based diet, the other enriched with a blend of vegetable oils (75%) + fish oil (25%). Liver samples were taken from fish at four time points: two freshwater phase (as parr 36 weeks post hatch (wph); as pre-smolts, 52 wph) and two marine phase ( as post-smolts 55 wph; and as adult fish , 86 wph). A total of 96 cDNA microarray hybridisations - TRAITS / SGP Atlantic salmon 17k feature cDNA microarray - were performed ( 2 diets x 4 time points x 6 biological replicates x 2 -dye swap) using a comon pooled reference contol design.
Project description:The mechanisms underlying the progression of non-alcoholic steatohepatitis (NASH) are not completely elucidated. In this study we have integrated gene expression profiling of liver biopsies of NASH patients with translational studies in a mouse model of steatohepatitis and with pharmacological interventions in isolated hepatocytes to identify a novel mechanism implicated in the pathogenesis of NASH. By using high-density oligonucleotide microarray analysis we identified a significant enrichment of known genes involved in the multi-step catalysis of long chain polyunsaturated fatty acids, including delta-5 and 6 desaturases. A combined inhibitor of delta-5 and delta-6 desaturases significantly reduced intracellular lipid accumulation and inflammatory gene expression in isolated hepatocytes. Gas chromatography analysis revealed impaired delta-5 desaturase activity toward the omega-3 pathway in livers from mice with high-fat diet (HFD)-induced NASH. Consistently, restoration of omega-3 index in transgenic fat-1 mice expressing an omega-3 desaturase, which allows the endogenous conversion of omega-6 into omega-3 fatty acids, produced a significant reduction in hepatic insulin resistance, hepatic steatosis, macrophage infiltration and necroinflammatory liver injury, accompanied by attenuated expression of genes involved in inflammation, fatty acid uptake and lipogenesis. These results were comparable to those obtained in a group of mice receiving a HFD supplemented with EPA/DHA. Of interest, hepatocytes from fat-1 mice or supplemented with EPA exhibited synergistic anti-steatotic and anti-inflammatory actions with the delta-5/ delta-6 inhibitor. Conclusion: These findings indicate that both endogenous and exogenous restoration of the hepatic balance between omega-6 and omega-3 fatty acids and/or modulation of desaturase activities exert preventive actions in NASH. The complete database comprised the expression measurements of 18185 genes for liver sample groups: 8 non-alcoholic steatohepatitis (NASH ) and 7 control samples. This dataset is part of the TransQST collection.