A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production.
Ontology highlight
ABSTRACT: The Corynebacterium glutamicum mutant KY9714, originally isolated as a lysozyme-sensitive mutant, does not grow at 37 degrees C. Complementation tests and DNA sequencing analysis revealed that a mutation in a single gene of 1,920 bp, ltsA (lysozyme and temperature sensitive), was responsible for its lysozyme sensitivity and temperature sensitivity. The ltsA gene encodes a protein homologous to the glutamine-dependent asparagine synthetases of various organisms, but it could not rescue the asparagine auxotrophy of an Escherichia coli asnA asnB double mutant. Replacement of the N-terminal Cys residue (which is conserved in glutamine-dependent amidotransferases and is essential for enzyme activity) by an Ala residue resulted in the loss of complementation in C. glutamicum. The mutant ltsA gene has an amber mutation, and the disruption of the ltsA gene caused lysozyme and temperature sensitivity similar to that in the KY9714 mutant. L-Glutamate production was induced by elevating growth temperature in the disruptant. These results indicate that the ltsA gene encodes a novel glutamine-dependent amidotransferase that is involved in the mechanisms of formation of rigid cell wall structure and in the L-glutamate production of C. glutamicum.
SUBMITTER: Hirasawa T
PROVIDER: S-EPMC101969 | biostudies-literature | 2000 May
REPOSITORIES: biostudies-literature
ACCESS DATA