Unknown

Dataset Information

0

Zebrafish as a model for cardiac disease; Cryo-EM structure of native cardiac thin filaments from Danio Rerio.


ABSTRACT: Actin, tropomyosin and troponin, the proteins that comprise the contractile apparatus of the cardiac thin filament, are highly conserved across species. We have used cryo-EM to study the three-dimensional structure of the zebrafish cardiac thin and actin filaments. With 70% of human genes having an obvious zebrafish orthologue, and conservation of 85% of disease-causing genes, zebrafish are a good animal model for the study of human disease. Our structure of the zebrafish thin filament reveals the molecular interactions between the constituent proteins, showing that the fundamental organisation of the complex is the same as that reported in the human reconstituted thin filament. A reconstruction of zebrafish cardiac F-actin demonstrates no deviations from human cardiac actin over an extended length of 14 actin subunits. Modelling zebrafish homology models into our maps enabled us to compare, in detail, the similarity with human models. The structural similarities of troponin-T in particular, a region known to contain a hypertrophic cardiomyopathy 'hotspot', confirm the suitability of zebrafish to study these disease-causing mutations.

SUBMITTER: Bradshaw M 

PROVIDER: S-EPMC10542308 | biostudies-literature | 2023 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Zebrafish as a model for cardiac disease; Cryo-EM structure of native cardiac thin filaments from Danio Rerio.

Bradshaw Marston M   Squire John M JM   Morris Edward E   Atkinson Georgia G   Richardson Rebecca R   Lees Jon J   Caputo Massimo M   Bigotti Giulia M GM   Paul Danielle M DM  

Journal of muscle research and cell motility 20230722 3


Actin, tropomyosin and troponin, the proteins that comprise the contractile apparatus of the cardiac thin filament, are highly conserved across species. We have used cryo-EM to study the three-dimensional structure of the zebrafish cardiac thin and actin filaments. With 70% of human genes having an obvious zebrafish orthologue, and conservation of 85% of disease-causing genes, zebrafish are a good animal model for the study of human disease. Our structure of the zebrafish thin filament reveals t  ...[more]

Similar Datasets

| S-EPMC9832952 | biostudies-literature
| S-EPMC8748809 | biostudies-literature
| S-EPMC3925185 | biostudies-literature
2022-02-17 | PXD029013 | Pride
| S-EPMC4388727 | biostudies-literature
| S-EPMC6768649 | biostudies-literature
| S-EPMC7451941 | biostudies-literature
| S-EPMC10542181 | biostudies-literature
| S-EPMC3157393 | biostudies-literature
| S-EPMC6787237 | biostudies-literature