Project description:Platelet-activating factor (PAF) is a potent, bioactive phospholipid that acts on multiple cells and tissues through its G protein-coupled receptor (GPCR). PAF is not stored but is rapidly generated via enzymatic acetylation of the precursor 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). The bioactivity of PAF is effectively and tightly regulated by PAF acetylhydrolases, which convert PAF back to lysoPAF. Previous studies report that lysoPAF is an inactive precursor and metabolite of PAF. However, lysoPAF has not been carefully studied in its own context. Here we report that lysoPAF has an opposing effect of PAF in the activation of neutrophils and platelets. Whereas PAF potentiates neutrophil NADPH oxidase activation, lysoPAF dose-dependently inhibits this function. Inhibition by lysoPAF is not affected by the use of a PAF receptor antagonist or genetic deletion of the PAF receptor gene. The mechanism of lysoPAF-mediated inhibition of neutrophils involves an elevation in the intracellular cAMP level, and pharmacological blockade of adenylyl cyclase completely reverses the inhibitory effect of lysoPAF. In addition, lysoPAF increases intracellular cAMP levels in platelets and inhibits thrombin-induced platelet aggregation, which can be reversed by inhibition of protein kinase A. These findings identify lysoPAF as a bioactive lipid with opposing functions of PAF and suggest a novel and intrinsic regulatory mechanism for balance of the potent activity of PAF.
Project description:Platelet rich plasma (PRP) is blood plasma with a platelet concentration above baseline. When activated, PRP releases growth factors involved in all stages of wound healing, potentially boosting the healing process. To expand our knowledge of the effectiveness of PRP, it is crucial to know the content and composition of PRP products. In this study, growth factor quantification measurements of PRP from burn patients and gender- and age-matched controls were performed. The PRP of burn patients showed levels of growth factors comparable to those of the PRP of healthy volunteers. Considerable intra-individual variation in growth factor content was found. However, a correlation was found between the platelet count of the PRP and most of the growth factors measured.
Project description:Loss-of-function variants in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) are associated with decreased inflammation in human chronic liver disease. The underlying mechanism by which HSD17B13 promotes liver inflammation remains largely elusive. Here we find that HSD17B13 undergoes liquid-liquid phase separation (LLPS) around lipid droplets (LDs) in the liver of NASH patients. Dimerization of HSD17B13 drives LLPS formation and regulates its enzyme activity. HSD17B13 LLPS promotes leukocyte adhesion and fibrinogen expression in hepatocytes via activating autocrine platelet activating factor (PAF) signaling. Importantly, adeno-associated viral (AAV)-mediated xeno-expression of human HSD17B13 promotes liver inflammation in Hsd17b13-/- mice induced by high fat diet/carbon tetrachloride treatment. In conclusion, HSD17B13 LLPS triggers liver inflammation via promoting PAF-mediated leukocyte adhesion. Targeting HSD17B13 phase transition would be a promising approach to treat liver inflammation in chronic liver disease.
Project description:This data series contains spotted oligo microarray data from 10 different experiments using Agilent Rat v2 microarrays. This data is being made public in support of Fillon S et al. Journal of Immunology, (2006). Proinflammatory bacterial components are at least partially responsible for causing the clinical features of sepsis, a syndrome that causes >100,000 deaths each year in the US (1). In the case of Gram positive infection, a key bacterial element recognized by the innate immune system is the cell wall, a complex network of peptidoglycan covalently linked to teichoic acids, proteins and lipoproteins. The current model of innate immune recognition of Gram positive bacteria suggests bacterial cell wall interacts with host recognition proteins, such as toll-like receptors (TLR) and Nod proteins. We describe an additional recognition system mediated by the platelet activating factor receptor (PAFr) and directed to the pathogen associated molecular pattern (PAMP) phosphorylcholine that results in uptake of bacterial components into host cells. Intravascular choline-containing cell walls bound to endothelial cells and caused rapid lethality in wild type, Tlr2-/- and Nod2-/- mice, but not in Pafr-/- mice. Cell wall exited the vasculature into the heart and brain, accumulating within endothelial cells, cardiomyocytes and neurons in a PAFr-dependent way. Physiological consequences of the cell wall/PAFr interaction were cell specific, being noninflammatory in endothelial cells and neurons, but causing rapid loss of cardiomyocyte contractility that contributed to death. Thus, PAFr shepherds phosphorylcholine-containing bacterial components such as cell wall into host cells from where the response ranges from quiescence to severe pathophysiology. Keywords: Competitive hybridizations The ten experiments in this series comprise of four distinct experiments, two of which were performed as biological triplicates and two as biological duplicates. The table below describes the overall design in detail: File Name Experiment 16011868017643v41_GEO_format.txt RBCEC Replicate 1 16011868017644v41_GEO_format.txt RBCEC Replicate 2 251186821865v41_GEO_format.txt Neuron Replicate 1 16011868021377v41_GEO_format.txt Neuron Replicate 2 251186821690v41_GEO_format.txt CW/Lyt44 Replicate 1 251186821691v41_GEO_format.txt CW/Lyt44 Replicate 2 251186821692v41_GEO_format.txt CW/Lyt44 Replicate 1 251186821693v41_GEO_format.txt CW+TNF/Lyt44+TNF Replicate 1 251186821694v41_GEO_format.txt CW+TNF/Lyt44+TNF Replicate 2 251186829677v41_GEO_format.txt CW+TNF/Lyt44+TNF Replicate 3
Project description:Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective treatments for pain but may induce bleeding events due to platelet dysfunction associated with inhibition of cyclooxygenase (COX)-1 impairing thromboxane production. An intravenous nanocrystal formulation of meloxicam, a COX-2 preferential nonsteroidal anti-inflammatory drug, is under development for the treatment of moderate to severe pain. This single-center ex vivo study evaluated the effect of meloxicam intravenous and ketorolac on platelet function in whole blood samples from healthy volunteers. Each whole blood sample was aliquoted to allow analysis using a platelet function analyzer under negative control (untreated), positive control (2 therapeutic ketorolac concentrations), and meloxicam intravenous (1 therapeutic, 3 supratherapeutic concentrations) using both collagen with epinephrine and collagen with adenosine diphosphate reagent cartridges. The platelet function analyzer determines closure time by simulating platelet adhesion and aggregation following vascular injury. The final analysis set included data from 8 subjects. The collagen with adenosine diphosphate analysis (sensitive to thrombocytopathies) showed no significant differences in closure time for meloxicam- or ketorolac-treated samples and untreated control. The collagen with epinephrine analysis (sensitive to aspirin-induced platelet abnormalities) produced no significant difference in closure time between any meloxicam concentration and untreated control. Ketorolac was associated with significantly longer closure times vs untreated control at both the 2.5- and 5-µg/mL concentrations (P = .003 and .0257, respectively) and vs meloxicam at several concentrations. Similar results were observed when all analyzed samples were included. Meloxicam intravenous had no significant effect on closure times at therapeutic or supratherapeutic concentrations in this ex vivo study.
Project description:Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens.
Project description:This data series contains spotted oligo microarray data from 10 different experiments using Agilent Rat v2 microarrays. This data is being made public in support of Fillon S et al. Journal of Immunology, (2006). Proinflammatory bacterial components are at least partially responsible for causing the clinical features of sepsis, a syndrome that causes >100,000 deaths each year in the US (1). In the case of Gram positive infection, a key bacterial element recognized by the innate immune system is the cell wall, a complex network of peptidoglycan covalently linked to teichoic acids, proteins and lipoproteins. The current model of innate immune recognition of Gram positive bacteria suggests bacterial cell wall interacts with host recognition proteins, such as toll-like receptors (TLR) and Nod proteins. We describe an additional recognition system mediated by the platelet activating factor receptor (PAFr) and directed to the pathogen associated molecular pattern (PAMP) phosphorylcholine that results in uptake of bacterial components into host cells. Intravascular choline-containing cell walls bound to endothelial cells and caused rapid lethality in wild type, Tlr2-/- and Nod2-/- mice, but not in Pafr-/- mice. Cell wall exited the vasculature into the heart and brain, accumulating within endothelial cells, cardiomyocytes and neurons in a PAFr-dependent way. Physiological consequences of the cell wall/PAFr interaction were cell specific, being noninflammatory in endothelial cells and neurons, but causing rapid loss of cardiomyocyte contractility that contributed to death. Thus, PAFr shepherds phosphorylcholine-containing bacterial components such as cell wall into host cells from where the response ranges from quiescence to severe pathophysiology. Keywords: Competitive hybridizations
Project description:total RNA from mouse (male c57BL/6) spleen labeled with Cy3 vs total RNA from mouse (male c57BL/6) B cells treated with Platelet activating factor labeled with Cy5- time course with repeats Keywords: ordered
Project description:Platelet-activating factor (PAF) is a potent biologically active phospholipid that mediates human physiological and pathophysiologic responses. PAF levels increase transiently and are typically assessed by techniques with limitations related to expense, sensitivity, pre-analysis derivatization and interference with isobaric molecules. This study elucidates a facile, accurate liquid chromatography-mass spectrometry analytical method for PAF. In negative ion mode using electrospray ionization, collisionally-activated dissociation analysis showed a unique product ion for acetate adducts of PAF molecular species representing the loss of methyl acetate from the polar head group and loss of a part of the acetate group from the sn-2 position. This product ion was exploited for selected reaction monitoring of PAF molecular species following separation by reversed-phase liquid chromatography. Standard calibration responses were determined, and this method was able to detect as low as 100 fmol of PAF. Finally, PAF molecular species were quantified in human neutrophils and monocytes.