Project description:Aldehyde dehydrogenases (ALDHs) represent large family members of NAD(P)+-dependent dehydrogenases responsible for the irreversible metabolism of many endogenous and exogenous aldehydes to the corresponding acids. Among 19 ALDH isozymes, mitochondrial ALDH2 is a low Km enzyme responsible for the metabolism of acetaldehyde and lipid peroxides such as malondialdehyde and 4-hydroxynonenal, both of which are highly reactive and toxic. Consequently, inhibition of ALDH2 would lead to elevated levels of acetaldehyde and other reactive lipid peroxides following ethanol intake and/or exposure to toxic chemicals. In addition, many East Asian people with a dominant negative mutation in ALDH2 gene possess a decreased ALDH2 activity with increased risks for various types of cancer, myocardial infarct, alcoholic liver disease, and other pathological conditions. The aim of this review is to briefly describe the multiple post-translational modifications of mitochondrial ALDH2, as an example, after exposure to toxic chemicals or under different disease states and their pathophysiological roles in promoting alcohol/drug-mediated tissue damage. We also briefly mention exciting preclinical translational research opportunities to identify small molecule activators of ALDH2 and its isozymes as potentially therapeutic/preventive agents against various disease states where the expression or activity of ALDH enzymes is altered or inactivated.
Project description:Involving addition of chemical groups or protein units to specific residues of the target protein, post-translational modifications (PTMs) alter the charge, hydrophobicity, and conformation of a protein, which in turn influences protein function, protein-protein interaction, and protein aggregation. These alterations, which include phosphorylation, glycosylation, ubiquitination, methylation, acetylation, lipidation, and lactylation, are significant biological events in the development of cancer, and play vital roles in numerous biological processes. The processes behind essential functions, the screening of clinical illness signs, and the identification of therapeutic targets all depend heavily on further research into the PTMs. This review outlines the influence of several PTM types on prostate cancer (PCa) diagnosis, therapy, and prognosis in an effort to shed fresh light on the molecular causes and progression of the disease.
Project description:Diabetes and its associated complications have increasingly become major challenges for global healthcare. The current therapeutic strategies involve insulin replacement therapy for type 1 diabetes (T1D) and small-molecule drugs for type 2 diabetes (T2D). Despite these advances, the complex nature of diabetes necessitates innovative clinical interventions for effective treatment and complication prevention. Accumulative evidence suggests that protein post-translational modifications (PTMs), including glycosylation, phosphorylation, acetylation, and SUMOylation, play important roles in diabetes and its pathological consequences. Therefore, the investigation of these PTMs not only sheds important light on the mechanistic regulation of diabetes but also opens new avenues for targeted therapies. Here, we offer a comprehensive overview of the role of several PTMs in diabetes, focusing on the most recent advances in understanding their functions and regulatory mechanisms. Additionally, we summarize the pharmacological interventions targeting PTMs that have advanced into clinical trials for the treatment of diabetes. Current challenges and future perspectives are also provided.
Project description:Microtubules--polymers of tubulin--perform essential functions, including regulation of cell shape, intracellular transport and cell motility. How microtubules are adapted to perform multiple diverse functions is not well understood. Post-translational modifications of tubulin subunits diversify the outer and luminal surfaces of microtubules and provide a potential mechanism for their functional specialization. Recent identification of a number of tubulin-modifying and -demodifying enzymes has revealed key roles of tubulin modifications in the regulation of motors and factors that affect the organization and dynamics of microtubules.
Project description:Increased sirtuin deacylase activity is correlated with increased lifespan and healthspan in eukaryotes. Conversely, decreased sirtuin deacylase activity is correlated with increased susceptibility to aging-related diseases. However, the mechanisms leading to decreased sirtuin activity during aging are poorly understood. Recent work has shown that oxidative post-translational modification by reactive oxygen (ROS) or nitrogen (RNS) species results in inhibition of sirtuin deacylase activity through cysteine nitrosation, glutathionylation, sulfenylation, and sulfhydration as well as tyrosine nitration. The prevalence of ROS/RNS (e.g., nitric oxide, S-nitrosoglutathione, hydrogen peroxide, oxidized glutathione, and peroxynitrite) is increased during inflammation and as a result of electron transport chain dysfunction. With age, cellular production of ROS/RNS increases; thus, cellular oxidants may serve as a causal link between loss of sirtuin activity and aging-related disease development. Therefore, the prevention of inhibitory oxidative modification may represent a novel means to increase sirtuin activity during aging. In this review, we explore the role of cellular oxidants in inhibiting individual sirtuin human isoform deacylase activity and clarify the relevance of ROS/RNS as regulatory molecules of sirtuin deacylase activity in the context of health and disease.
Project description:Dynamin related protein 1 (DRP1), a pivotal mitochondrial fission protein, is post-translationally modified by multiple mechanisms. Here we identify a new post-translational modification of DRP1 by the ubiquitin-like protein, interferon-stimulated gene 15 (ISG15). DRP1 ISGylation is mediated by ISG15 E3 ligase, HERC5; this promotes mitochondrial fission. DeISGylation of DRP1 however leads to hyperfusion. Heterologous expression of SARS-CoV2 PLpro, a deISGylating enzyme, results in similar mitochondrial filamentation, significant decrease in total DRP1 protein levels and efflux of mtDNA. We report that deISGylated DRP1 gets ubiquitylated and degraded by TRIM25, instead of PARKIN and MITOL. While the cytosolic pool of DRP1 is primarily ISGylated, both mitochondrial and cytosolic fractions may be ubiquitylated. It is known that phosphorylation of DRP1 at S616 residue regulates its mitochondrial localisation; we show that ISGylation of phospho-DRP1 (S616) renders fission competence at mitochondria. This is significant because DRP1 ISGylation affects its functionality and mitochondrial dynamics in Alzheimer's disease pathophysiology.
Project description:Histone variants are chromatin components that replace replication-coupled histones in a fraction of nucleosomes and confer particular characteristics to chromatin. H2A variants represent the most numerous and diverse group among histone protein families. In the nucleosomal structure, H2A-H2B dimers can be removed and exchanged more easily than the stable H3-H4 core. The unstructured N-terminal histone tails of all histones, but also the C-terminal tails of H2A histones protrude out of the compact structure of the nucleosome core. These accessible tails are the preferential target sites for a large number of post-translational modifications (PTMs). While some PTMs are shared between replication-coupled H2A and H2A variants, many modifications are limited to a specific histone variant. The present review focuses on the H2A variants H2A.Z, H2A.X, and macroH2A, and summarizes their functions in chromatin and how these are linked to cancer development and progression. H2A.Z primarily acts as an oncogene and macroH2A and H2A.X as tumour suppressors. We further focus on the regulation by PTMs, which helps to understand a degree of context dependency.
Project description:Rpb4/7 binds RNA Polymerase II (Pol II) transcripts co-transcriptionally and accompanies them throughout their lives. By virtue of its capacity to interact with key regulators (e.g., Pol II, eIF3, Pat1) both temporarily and spatially, Rpb4/7 regulates the major stages of the mRNA lifecycle. Here we show that Rpb4/7 can undergo over 100 combinations of post-translational modifications (PTMs). Remarkably, the Rpb4/7 PTMs repertoire changes as the mRNA/Rpb4/7 complex progresses from one stage to the next. A mutagenesis approach in residues that undergo PTMs suggests that temporal Rpb4 PTMs regulate its interactions with key regulators of gene expression that control transcriptional and post-transcriptional stages. Moreover, one mutant type specifically affects mRNA synthesis despite its normal association with Pol II, whereas the other affects both mRNA synthesis and decay; both types disrupt the balance between mRNA synthesis and decay (‘mRNA buffering’) and the cell’s capacity to respond to the environment. Taken together, we propose that temporal Rpb4/7 PTMs are involved in cross talks among the various stages of the mRNA lifecycle.