Membrane Design Principles for Ion-Selective Electrodialysis: An Analysis for Li/Mg Separation.
Ontology highlight
ABSTRACT: Selective electrodialysis (ED) is a promising membrane-based process to separate Li+ from Mg2+, which is the most critical step for Li extraction from brine lakes. This study theoretically compares the ED-based Li/Mg separation performance of different monovalent selective cation exchange membranes (CEMs) and nanofiltration (NF) membranes at the coupon scale using a unified mass transport model, i.e., a solution-friction model. We demonstrated that monovalent selective CEMs with a dense surface thin film like a polyamide film are more effective in enhancing the Li/Mg separation performance than those with a loose but highly charged thin film. Polyamide film-coated CEMs when used in ED have a performance similar to that of polyamide-based NF membranes when used in NF. NF membranes, when expected to replace monovalent selective CEMs in ED for Li/Mg separation, will require a thin support layer with low tortuosity and high porosity to reduce the internal concentration polarization. The coupon-scale performance analysis and comparison provide new insights into the design of composite membranes used for ED-based selective ion-ion separation.
SUBMITTER: Wang R
PROVIDER: S-EPMC10882969 | biostudies-literature | 2024 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA