Project description:Interconnected transmission systems are increasingly spreading out in HV networks to enhance system efficiency, decrease reserve capacity, and improve service reliability. However, the protection of multi-terminal lines against Broken Conductor Fault (BCF) imposes significant difficulties in such networks as the conventional distance relays cannot detect BCF, as the BCF is not associated with a significant increase in current or reduction in voltage Traditionally, the earth fault relays in transmission lines may detect such fault; Nonetheless, it suffers from a long delay time. Moreover, many of the nearby earth fault relays detect the BCF causing unnecessary trips and badly affecting the system stability. In this article, a novel single-end scheme based on extracting transient features from current signals by discrete wavelet transform (DWT) is proposed for detecting BCFs in interconnected HV transmission systems. The suggested scheme unit (SSU) is capable of accurately detecting all types of BCFs and shunt high impedance faults (SHIFs). It also adaptively calculates the applied threshold values. The accurate selectivity in multi-terminal lines is achieved based on a fault directional element by analyzing transient power polarity. The SSU discriminates between internal/external faults effectively utilizing the time difference observed between the first spikes of aerial and ground modes in the current signals. Different fault scenarios have been simulated on the IEEE 9-Bus, 230 kV interconnected system. The achieved results confirm the effectiveness, robustness, and reliability of SSU in detecting correctly BCFs as well as the SHIFs within only 24.5 ms. The SSU has confirmed its capability to be implemented in interconnected systems without any requirement for communication or synchronization between the SSU installed in multi-terminal lines.
Project description:Different from the output-input representation-based identification methods of two-block Hammerstein systems, this paper concerns a separate block-based parameter estimation method for each block of a two-block Hammerstein CARMA system, without combining the parameters of two parts together. The idea is to consider each block as a subsystem and to estimate the parameters of the nonlinear block and the linear block separately (interactively), by using two least-squares algorithms in one recursive step. The internal variable between the two blocks (the output of the nonlinear block, and also the input of the linear block) is replaced by different estimates: when estimating the parameters of the nonlinear part, the internal variable between the two blocks is computed by the linear function; when estimating the parameters of the linear part, the internal variable is computed by the nonlinear function. The proposed parameter estimation method possesses property of the higher computational efficiency compared with the previous over-parametrization method in which many redundant parameters need to be computed. The simulation results show the effectiveness of the proposed algorithm.
Project description:Multirotor micro air vehicles can operate in complex and confined environments that are otherwise inaccessible to larger drones. Operation in such environments results in airflow interactions between the propellers and proximate surfaces. The most common of these interactions is the ground effect. In addition to the increment in thrust efficiency, this effect disturbs the onboard sensors of the drone. In this paper, we present a fault-tolerant scheme for a multirotor with altitude sensor faults caused by the ground effect. We assume a hierarchical control structure for trajectory tracking. The structure consists of an external Proportional-Derivative controller and an internal Proportional-Integral controller. We consider that the sensor faults occur on the inner loop and counteract them in the outer loop. In a novel approach, we use a metric monocular Simultaneous Localization and Mapping algorithm for detecting internal faults. We design the fault diagnosis scheme as a logical process which depends on the weighted residual. Furthermore, we propose two control strategies for fault mitigation. The first combines the external PD controller and a function of the residual. The second treats the sensor fault as an actuator fault and compensates with a sliding mode action. In either case, we utilize onboard sensors only. Finally, we evaluate the effectiveness of the strategies in simulations and experiments.
Project description:Percolation is an emblematic model to assess the robustness of interconnected systems when some of their components are corrupted. It is usually investigated in simple scenarios, such as the removal of the system's units in random order, or sequentially ordered by specific topological descriptors. However, in the vast majority of empirical applications, it is required to dismantle the network following more sophisticated protocols, for instance, by combining topological properties and non-topological node metadata. We propose a novel mathematical framework to fill this gap: networks are enriched with features and their nodes are removed according to the importance in the feature space. We consider features of different nature, from ones related to the network construction to ones related to dynamical processes such as epidemic spreading. Our framework not only provides a natural generalization of percolation but, more importantly, offers an accurate way to test the robustness of networks in realistic scenarios.
Project description:A markerless gait analysis system can measure useful gait metrics to determine effective clinical treatment. Although this gait analysis system does not require a large space, several markers, or time constraints, it inaccurately measure lower limb joint kinematics during gait. In particular, it has a substantial ankle joint angle error. In this study, we investigated the markerless gait analysis method capability using single RGB camera-based pose estimation by OpenPose (OP) and an inertial measurement unit (IMU) sensor on the foot segment to measure ankle joint kinematics under various gait conditions. Sixteen healthy young adult males participated in the study. We compared temporo-spatial parameters and lower limb joint angles during four gait conditions with varying gait speeds and foot progression angles. These were measured by optoelectronic motion capture, markerless gait analysis method using OP, and proposed method using OP and IMU. We found that the proposed method using OP and an IMU significantly decreased the mean absolute errors of peak ankle joint angles compared with OP in the four gait conditions. The proposed method has the potential to measure temporo-spatial gait parameters and lower limb joint angles, including ankle angles, in various gait conditions as a clinical settings gait assessment tool.
Project description:This paper is concerned with the control law synthesis for robot manipulators, which guarantees that the effect of the sensor faults is kept under a permissible level, and ensures the stability of the closed-loop system. Based on Lyapunov's stability analysis, the conditions that enable the application of the simple bisection method in the optimization procedure were derived. The control law, with certain properties that make the construction of the Lyapunov function much easier-and, thus, the determination of stability conditions-was considered. Furthermore, the optimization problem was formulated as a class of problem in which minimization and maximization of the same performance criterion were simultaneously carried out. The algorithm proposed to solve the related zero-sum differential game was based on Newton's method with recursive matrix relations, in which the first- and second-order derivatives of the objective function are calculated using hyper-dual numbers. The results of this paper were evaluated in simulation on a robot manipulator with three degrees of freedom.
Project description:In this research, we focus on the use of Unmanned Aerial Vehicles (UAVs) for the delivery of payloads and navigation towards safe-landing zones, specifically on the modeling of flight dynamics of lightweight vehicles denoted Precision Aerial Delivery Systems (PADSs). While a wide range of nonlinear models has been developed and tested on high-end applications considering various degrees of freedom (DOF), linear models suitable for low-cost applications have not been explored thoroughly. In this study, we propose and compare two linear models, a linearized version of a 6-DOF model specifically developed for micro-lightweight systems, and an alternative model based on a double integrator. Both linear models are implemented with a sensor fusion algorithm using a Kalman filter to estimate the position and attitude of PADSs, and their performance is compared to a nonlinear 6-DOF model. Simulation results demonstrate that both models, when incorporated into a Kalman filter estimation scheme, can determine the flight dynamics of PADSs during smooth flights. While it is validated that the double integrator model can adequately operate under the proposed estimation scheme for up to small acceleration changes, the linearized model proves to be capable of reproducing the nonlinear model characteristics even during moderately steep turns.
Project description:Multi-sensor data fusion technology based on Dempster-Shafer evidence theory is widely applied in many fields. However, how to determine basic belief assignment (BBA) is still an open issue. The existing BBA methods pay more attention to the uncertainty of information, but do not simultaneously consider the reliability of information sources. Real-world information is not only uncertain, but also partially reliable. Thus, uncertainty and partial reliability are strongly associated with each other. To take into account this fact, a new method to represent BBAs along with their associated reliabilities is proposed in this paper, which is named reliability-based BBA. Several examples are carried out to show the validity of the proposed method.
Project description:Induction motors are essential and widely used components in many industrial processes. Although these machines are very robust, they are prone to fail. Nowadays, it is a paramount task to obtain a reliable and accurate diagnosis of the electric motor health, so that a subsequent reduction of the required time and repairing costs can be achieved. The most common approaches to accomplish this task are based on the analysis of currents, which has some well-known drawbacks that may lead to false diagnosis. With the new developments in the technology of the sensors and signal processing field, the possibility of combining the information obtained from the analysis of different magnitudes should be explored, in order to achieve more reliable diagnostic conclusions, before the fault can develop into an irreversible damage. This paper proposes a smart-sensor that explores the weighted analysis of the axial, radial, and combination of both stray fluxes captured by a low-cost, easy setup, non-invasive, and compact triaxial stray flux sensor during the start-up transient through the short time Fourier transform (STFT) and characterizes specific patterns appearing on them using statistical parameters that feed a feature reduction linear discriminant analysis (LDA) and then a feed-forward neural network (FFNN) for classification purposes, opening the possibility of offering an on-site automatic fault diagnosis scheme. The obtained results show that the proposed smart-sensor is efficient for monitoring and diagnosing early induction motor electromechanical faults. This is validated with a laboratory induction motor test bench for individual and combined broken rotor bars and misalignment faults.
Project description:This paper describes a method to estimate the direction from which the signal molecule reaches the sensor by using living cells. In this context, biohybrid sensors that utilize a sophisticated sensing system of cells can potentially offer high levels of chemical-detection sensitivity and selectivity. However, biohybrid-sensor-based chemical-source-direction estimation has not received research attention because the cellular response to chemicals has not been examined in the context of directional information. In our approach, we fabricated a device that can limit the interface between the cell-laden hydrogel and the chemical solution of interest to enhance the time difference over which the chemical solution reaches the cells. Chemical detection by cells that express specific receptors is reflected as the fluorescence of the calcium indicator within the cells. Our device has eight chambers that each house 3D cell-laden collagen hydrogels facing circularly outward. The device also works as a cover to prevent chemicals from permeating the hydrogel from above. In our study, by observing the time course of the fluorescence emission of each chamber, we were able to successfully estimate the chemical-source direction within an error range of 7-13°. Our results suggest that a combination of microstructure devices embedded with living cells can be used to exploit cell functionalities to yield chemical-source directional information.