Project description:Non-mutated FVIII-specific CD4 T cell epitopes have been recently found to contribute to the development of inhibitors in patients with hemophilia A (HA), while auto-reactive CD4 T cells specific to FVIII circulate in the blood of healthy individuals at a frequency close to the foreign protein Ovalbumin. Thus, although FVIII is a self-protein, the central tolerance raised against FVIII appears to be low. In this study, we conducted a comprehensive analysis of the FVIII CD4 T cell repertoire in twenty-nine healthy donors. Sequencing of the CDR3β TCR region from isolated FVIII-specific CD4 T cells revealed a limited usage and pairing of TRBV and TRBJ genes, as well as a mostly hydrophobic composition of the CDR3β region according to their auto-reactivity. FVIII repertoire is dominated by a few clonotypes, with only 13 clonotypes accounting for half of the FVIII response. Through a large-scale epitope mapping of the full-length FVIII sequence, we identified 18 immunodominant epitopes located in the A1, A3, C1, and C2 domains and covering half of the T-cell response. These epitopes exhibited a broad specificity for HLA-DR or DP molecules or both. T-cell priming with this reduced set of peptides revealed that highly expanded clonotypes specific to these epitopes were responsible individually for up to 32% of the total FVIII repertoire. These FVIII T cell epitopes and clonotypes were shared among HLA-unrelated donors tested and previously reported HA patients. Our study highlights the role of the auto-reactive T cell response against FVIII in HA and its similarity to the response observed in healthy individuals. Thus, it provides valuable insights for the development of new tolerance induction and deimmunization strategies
Project description:Characterization of single antibody lineages within infected individuals has provided insights into the development of Env-specific antibodies. However, a systems-level understanding of the humoral response against HIV-1 is limited. Here, we interrogated the antibody repertoires of multiple HIV-infected donors from an infection-naive state through acute and chronic infection using next-generation sequencing. This analysis revealed the existence of "public" antibody clonotypes that were shared among multiple HIV-infected individuals. The HIV-1 reactivity for representative antibodies from an identified public clonotype shared by three donors was confirmed. Furthermore, a meta-analysis of publicly available antibody repertoire sequencing datasets revealed antibodies with high sequence identity to known HIV-reactive antibodies, even in repertoires that were reported to be HIV naive. The discovery of public antibody clonotypes in HIV-infected individuals represents an avenue of significant potential for better understanding antibody responses to HIV-1 infection, as well as for clonotype-specific vaccine development.
Project description:Adaptive immunity is a fundamental component in controlling COVID-19. In this process, follicular helper T (Tfh) cells are a subset of CD4+ T cells that mediate the production of protective antibodies; however, the SARS-CoV-2 epitopes activating Tfh cells are not well characterized. Here, we identified and crystallized TCRs of public circulating Tfh (cTfh) clonotypes that are expanded in patients who have recovered from mild symptoms. These public clonotypes recognized the SARS-CoV-2 spike (S) epitopes conserved across emerging variants. The epitope of the most prevalent cTfh clonotype, S864-882, was presented by multiple HLAs and activated T cells in most healthy donors, suggesting that this S region is a universal T cell epitope useful for booster antigen. SARS-CoV-2-specific public cTfh clonotypes also cross-reacted with specific commensal bacteria. In this study, we identified conserved SARS-CoV-2 S epitopes that activate public cTfh clonotypes associated with mild symptoms.
Project description:Respiratory support improvements have aided survival of premature neonates, but infection susceptibility remains a predominant problem. We previously reported that neonatal mice have a rapidly evolving T-cell receptor (TCR) repertoire that impairs CD8+ T cell immunity. To understand the impact of prematurity on the human CD8+ TCR repertoire, we performed next-generation sequencing of the complementarity-determining region 3 (CDR3) from the rearranged TCR variable beta (Vβ) in sorted, naïve CD8+ T cells from extremely preterm neonates (23-27 weeks gestation), term neonates (37-41 weeks gestation), children (16-56 months), and adults (25-50 years old). Strikingly, preterm neonates had an increased frequency of public clonotypes shared between unrelated individuals. Public clonotypes identified in preterm infants were encoded by germline gene sequences, and some of these clonotypes persisted into adulthood. The preterm neonatal naïve CD8+ TCR repertoire exhibited convergent recombination, characterized by different nucleotide sequences encoding the same amino acid CDR3 sequence. As determined by Pielou's evenness and iChao1 metrics, extremely preterm neonates have less clonality, and a much lower bound for the number of unique TCR within an individual preterm neonate, which indicates a less rich and diverse repertoire, as compared to term neonates, children, and adults. This suggests that T cell selection in the preterm neonate may be less stringent or different. Our analysis is the first to compare the TCR repertoire of naïve CD8+ T cells between viable preterm neonates and term neonates. We find preterm neonates have a repertoire immaturity which potentially contributes to their increased infection susceptibility. A developmentally regulated, evenly distributed repertoire in preterm neonates may lead to the inclusion of public TCR CDR3β sequences that overlap between unrelated individuals in the preterm repertoire.
Project description:Cross-reactivity of T cells is defined as recognition of two or more peptide-MHC complexes by the same T cell. Although examples of cross-reactivity have been reported, a detailed examination of cross-reactivity has not been performed. In this study, we took advantage of the high degree of polyclonality in the BV19 T cell repertoire responding to influenza M1(58-66) in HLA-A2 individuals to obtain a measure of simple cross-reactivity. We used substitutions that incrementally change the structure of the M1(58-66) peptide to measure how the HLA-A2-restricted response adapts to these changes. In three HLA-A2 adult subjects, we identified the BV19 clonotypes in the recall response to the influenza epitope M1(58-66) and 12 M1 peptides substituted at TCR contact position 63 or 65. The fraction of cross-reactive clonotypes in the M1(58-66) repertoire varied from 45-58% in the three donors. The extent of cross-reactivity, which is the additional number of peptides recognized by a single clonotype, is as high as six. We summarized the data using graph theory, with the cross-reactive clonotypes connecting the different HLA-A2 peptides recognized. The cross-reactive clonotypes form a well-connected network that could provide protection from virus-escape variants. We predict that any new pathogen with an epitope whose shape corresponds to that of the peptides that we studied would find a pre-existing repertoire ready to respond to it. We propose that in adult memory repertoires, previously encountered epitopes may have generated similar cross-reactive repertoires.
Project description:Understanding the hallmarks of the immune response to SARS-CoV-2 is critical for fighting the COVID-19 pandemic. We assessed antibody and T cell reactivity in convalescent COVID-19 patients and healthy donors sampled both prior to and during the pandemic. Healthy donors examined during the pandemic exhibited increased numbers of SARS-CoV-2-specific T cells, but no humoral response. Their probable exposure to the virus resulted in either asymptomatic infection without antibody secretion or activation of preexisting immunity. In convalescent patients, we observed a public and diverse T cell response to SARS-CoV-2 epitopes, revealing T cell receptor (TCR) motifs with germline-encoded features. Bulk CD4+ and CD8+ T cell responses to the spike protein were mediated by groups of homologous TCRs, some of them shared across multiple donors. Overall, our results demonstrate that the T cell response to SARS-CoV-2, including the identified set of TCRs, can serve as a useful biomarker for surveying antiviral immunity.
Project description:The results from recent brain-machine interface (BMI) studies suggest that it may be more efficient to use simple arbitrary relationships between individual neuron activity and BMI movements than the complex relationship observed between neuron activity and natural movements. This idea is based on the assumption that individual neurons can be conditioned independently regardless of their natural movement association.We tested this assumption in the parietal reach region (PRR), an important candidate area for BMIs in which neurons encode the target location for reaching movements. Monkeys could learn to elicit arbitrarily assigned activity patterns, but the seemingly arbitrary patterns always belonged to the response set for natural reaching movements. Moreover, neurons that are free from conditioning showed correlated responses with the conditioned neurons as if they encoded common reach targets. Thus, learning was accomplished by finding reach targets (intrinsic variable of PRR neurons) for which the natural response of reach planning could approximate the arbitrary patterns.Our results suggest that animals learn to volitionally control single-neuron activity in PRR by preferentially exploring and exploiting their natural movement repertoire. Thus, for optimal performance, BMIs utilizing neural signals in PRR should harness, not disregard, the activity patterns in the natural sensorimotor repertoire.
Project description:Mapping the precise determinants of T-cell efficacy against viruses in humans is a public health priority with crucial implications for vaccine design. To inform this effort, we performed a comprehensive analysis of the effective CD8(+) T-cell clonotypes that constitute responses specific for the HIV p24 Gag-derived KK10 epitope (KRWIILGLNK; residues 263-272) restricted by HLA-B*2705, which are known to confer superior control of viral replication in HIV-infected individuals. Particular KK10-specific CD8(+) T-cell clonotypes, characterized by TRBV4-3/TRBJ1-3 gene rearrangements, were found to be preferentially selected in vivo and shared between individuals. These "public" clonotypes exhibit high levels of TCR avidity and Ag sensitivity, which impart functional advantages and enable effective suppression of HIV replication. The early L(268)M mutation at position 6 of the KK10 epitope enables the virus to avoid recognition by these highly effective CD8(+) T-cell clonotypes. However, alternative clonotypes with variant reactivity provide flexibility within the overall KK10-specific response. These findings provide refined mechanistic insights into the workings of an effective CD8(+) T-cell response against HIV.