Project description:This study investigated the presence of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii in stool samples from a patient population in Sydney, Australia. Stool samples were tested by microscopy and PCR. Five patients were found with E. histolytica infections, while E. dispar and E. moshkovskii were observed in 63 (70.8%) and 55 (61.8%) patients, respectively, by PCR. This is the first study in Australia using molecular techniques to determine the presence of E. histolytica, E. dispar, and E. moshkovskii.
Project description:This study aimed to determine the prevalence of Entamoeba histolytica, Entamoeba dispar and Entamoeba moshkovskii (collectively referred to as Entamoeba complex), using microscopic and molecular methods in Kurdistan Province, northwest of Iran. The relationship between positive Entamoeba species and clinical symptoms was also investigated. Eight positive Entamoeba complex, as well as four Entamoeba complex-like isolates, were detected by microscopic stool examination. DNA was extracted from all positive and from 55 randomly selected negative stool samples. PCR was performed using species-specific 18S rRNA primers for the Entamoeba complex. All positive PCR samples were sequenced. In total, 14 (1.01%) out of 1383 isolates, i.e. 12 microscopy-positive and Entamoeba complex-like isolates and two out of 55 microscopy-negative isolates, were identified via PCR and sequencing. Overall, 0.58% (8/1383) of the isolates were E. dispar, 0.14% (2/1383) E. histolytica, 0.07% (1/1383) E. moshkovskii and 0.22% (3/1383) were mixed of E. histolytica and E. dispar. Based on our findings, the prevalence of E. dispar is greater than that of E. histoltyica. On the other hand, a case of E. moshkovskii was reported for the first time in this region. It seems that some gastrointestinal symptoms may be attributed to Entamoeba species.
Project description:BackgroundE. histolytica, a pathogenic amoeba, is indistinguishable in its cyst and trophozoite stages from those of non-pathogenic E. moshkovskii and E. dispar by light microscopy. We have developed a nested multiplex PCR targeting a 16S-like rRNA gene for differential detection of all the three morphologically similar forms of E. histolytica, E. moshkovskii and E. dispar simultaneously in stool samples.ResultsThe species specific product size for E. histolytica, E. moshkovskii and E. dispar was 439, 553 and 174 bp respectively, which was clearly different for all the three Entamoeba species. The nested multiplex PCR showed a sensitivity of 94% and specificity of 100% for the demonstration of E. histolytica, E. moshkovskii and E. dispar DNA in stool samples. The PCR was positive for E. histolytica, E. moshkovskii and E. dispar in a total of 190 out of 202 stool specimens (94% sensitive) that were positive for E. histolytica/E. dispar/E. moshkovskii by examination of stool by microscopy and/or culture. All the 35 negative control stool samples that were negative for E. histolytica/E. dispar/E. moshkovskii by microscopy and culture were also found negative by the nested multiplex PCR (100% specific). The result from the study shows that only 34.6% of the patient stool samples that were positive for E. histolytica/E. dispar/E. moshkovskii by examination of stool by microscopy and/or culture, were actually positive for pathogenic E. histolytica and the remaining majority of the stool samples were positive for non-pathogenic E. dispar or E. moshkovskii as demonstrated by the use of nested multiplex PCR.ConclusionThe present study reports a new nested multiplex PCR strategy for species specific detection and differentiation of E. histolytica, E. dispar and E. moshkovskii DNA in stool specimens. The test is highly specific, sensitive and also rapid, providing the results within 12 hours of receiving stool specimens.
Project description:A single-round PCR assay was developed for detection and differential diagnosis of the three Entamoeba species found in humans, Entamoeba moshkovskii, Entamoeba histolytica, and Entamoeba dispar, that are morphologically identical as both cysts and trophozoites. A conserved forward primer was derived from the middle of the small-subunit rRNA gene, and reverse primers were designed from signature sequences specific to each of these three Entamoeba species. PCR generates a 166-bp product with E. histolytica DNA, a 752-bp product with E. dispar DNA, and a 580-bp product with E. moshkovskii DNA. Thirty clinical specimens were examined, and the species present were successfully detected and differentiated using this assay. It was possible to detect as little as 10 pg of E. moshkovskii and E. histolytica DNA, while for E. dispar the sensitivity was about 20 pg of DNA. Testing with DNA from different pathogens, including bacteria and other protozoa, confirmed the high specificity of the assay. We propose the use of this PCR assay as an accurate, rapid, and effective diagnostic method for the detection and discrimination of these three morphologically indistinguishable Entamoeba species in both routine diagnosis of amoebiasis and epidemiological surveys.
Project description:BackgroundEntamoeba moshkovskii and E. dispar are impossible to differentiate microscopically from the pathogenic species E. histolytica. Multiplex polymerase chain reaction (Multiplex PCR) is a widespread molecular biology technique for amplification of multiple targets in a single PCR experiment.MethodsFor detection and differentiation of the three-microscopy indistinguishable Entamoeba species in human, multiplex PCR assay using different DNA extraction methods was studied. A conserved forward primer was derived from the middle of the small-subunit rRNA gene, and reverse primers were designed from signature sequences specific to each of these three Entamoeba species.ResultsA 166-bp PCR product with E. histolytica DNA, a 580-bp product with E. moshkovskii DNA and a 752-bp product with E. dispar DNA were generated in a single-round and multiplex PCR reaction.ConclusionWe recommend this PCR assay as an accurate, rapid, and effective diagnostic method for the detection and discrimination of these three Entamoeba species in both routine diagnosis of amoebiasis and epidemiological surveys.
Project description:BackgroundThe level of intra-species genetic variation in Entamoeba histolytica, Entamoeba dispar and Entamoeba moshkovskii populations in a localized geographic area, like Puducherry, India, remains unknown.MethodsIn the present study the existence of genetic variation in the nested multiplex polymerase chain reaction (NM-PCR) amplified region of the 16S-like ribosomal RNA genes of E. histolytica, E. dispar and E. moshkovskii was investigated by riboprinting and single strand conformation polymorphism (SSCP) analysis.ResultsWe found that 70 stool specimens were positive for E. histolytica, 171 stool specimens were positive for E. dispar, and 37 stool specimens were positive for E. moshkovskii by NM-PCR. Ninety liver abscess pus specimens, 21 urine specimens, and 8 saliva specimens were positive for E. histolytica by NM-PCR. Riboprinting analysis detected a mutation in the PCR product of only one E. histolytica isolate from a stool specimen. However, SSCP analysis detected mutations in the PCR products of five E. histolytica isolates and three E. moshkovskii isolates from stool specimens, and one E. histolytica isolate from a saliva specimen. The mutations detected by riboprinting and SSCP analysis were confirmed by sequencing. All the nucleotide sequences showing mutations in this study have already been deposited into the NCBI GenBank database under accession numbers [GenBank: EF682200 to GenBank: EF682208].ConclusionThe present study has revealed the subsistence of mutations in the ribosomal RNA genes of E. histolytica and E. moshkovskii, which points towards the existence of intra-species genetic variation in E. histolytica and E. moshkovskii isolates infecting humans.
Project description:Multiplex real-time polymerase chain reaction (PCR) was developed for differential detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii. Specific primers were designed for all three species, and then differentiation of E. histolytica and E. dispar was achieved simultaneously using a hybridization probe and melting curve analysis, whereas E. moshkovskii was detected with a separate probe under the same condition. This assay detected as little as 0.2 pg of E. histolytica DNA and 2 pg each for E. dispar and E. moshkovskii DNA. Thirty-five clinical samples suspected to be E. histolytica infection by microscopy were tested. The results showed 32 positive samples; four samples were E. histolytica and 28 samples were E. dispar. Interestingly, one E. dispar positive sample showed a mixed infection with E. moshkovskii. This is the first report of E. moshkovskii infection from Thailand and this assay is currently the most rapid and sensitive method to differentiate these human amoebas.
Project description:Entamoeba moshkovskii is a member of the Entamoeba complex and a colonizer of the human gut. We used nested polymerase chain reaction (PCR) to differentiate Entamoeba species in stool samples that had previously been screened by microscopy. Forty-six samples were tested, 23 of which had previously been identified as Entamoeba complex positive by microscopy. Of the 46 specimens tested, we identified nine (19.5%) as E. moshkovskii-positive. In seven of these nine E. moshkovskii-positive samples, either E. dispar or E. histolytica (or both) were also identified, suggesting that co-infections may be common. E. moshkovskii was also detected in both symptomatic and asymptomatic participants. To the best of our knowledge, this is the first report of E. moshkovskii in Kenya.
Project description:A multiplex rapid detection system, based on a PCR-lateral flow biosensor (mPCR-LFB) was developed to identify Salmonella Typhi and Salmonella Paratyphi A from suspected carriers. The lower detection limit for S. Typhi and S. Paratyphi A was 0.16 and 0.08 ng DNA equivalent to 10 and 102 CFU/mL, respectively. Lateral flow biosensor was used for visual detection of mPCR amplicons (stgA, SPAint, ompC, internal amplification control) by labeling forward primers with fluorescein-isothiocyanate (FITC), Texas Red, dinitrophenol (DNP) and digoxigenin (DIG) and reverse primers with biotin. Binding of streptavidin-colloidal gold conjugate with the amplicons resulted in formation of a red color dots on the strip after 15-20 min of sample exposure. The nucleic acid lateral flow analysis of the mPCR-LFB was better in sensitivity and more rapid than the conventional agarose gel electrophoresis. Moreover, the mPCR-LFB showed 100% sensitivity and specificity when evaluated with stools spiked with 100 isolates of Salmonella genus and other bacteria. A prospective cohort study on stool samples of 1176 food handlers in outbreak areas (suspected carriers) resulted in 23 (2%) positive for S. Typhi. The developed assay has potential to be used for rapid detection of typhoid carriers in surveillance program.
Project description:The rapid detection of pathogens in infected wounds can significantly improve the clinical outcome. Wound exudate, which can be collected in a non-invasive way, offers an attractive sample material for the detection of pathogens at the point-of-care (POC). Here, we report the development of a nucleic acid lateral flow immunoassay for direct detection of isothermally amplified DNA combined with fast sample preparation. The streamlined protocol was evaluated using human wound exudate spiked with the opportunistic pathogen Pseudomonas aeruginosa that cause severe health issues upon wound colonization. A detection limit of 2.1 × 105 CFU per mL of wound fluid was achieved, and no cross-reaction with other pathogens was observed. Furthermore, we integrated an internal amplification control that excludes false negative results and, in combination with the flow control, ensures the validity of the test result. The paper-based approach with only three simple hands-on steps has a turn-around time of less than 30 min and covers the complete analytical process chain from sample to answer. This newly developed workflow for wound fluid diagnostics has tremendous potential for reliable pathogen POC testing and subsequent target-oriented therapy.