Project description:While next-generation sequencing (NGS) is used to guide therapy in patients with metastatic lung adenocarcinoma (LUAD), use of NGS to determine pathologic LN metastasis prior to surgery has not been assessed. To bridge this knowledge gap, we performed NGS using MSK-IMPACT in 426 treatment-naive patients with clinical N2-negative LUAD. A multivariable logistic regression model that considered preoperative clinical and genomic variables was constructed. Most patients had cN0 disease (85%) with pN0, pN1, and pN2 rates of 80%, 11%, and 9%, respectively. Genes altered at higher rates in pN-positive than in pN-negative tumors were STK11 (p = 0.024), SMARCA4 (p = 0.006), and SMAD4 (p = 0.011). Fraction of genome altered (p = 0.037), copy number amplifications (p = 0.001), and whole-genome doubling (p = 0.028) were higher in pN-positive tumors. Multivariable analysis revealed solid tumor morphology, tumor SUVmax, clinical stage, SMARCA4 and SMAD4 alterations were independently associated with pathologic LN metastasis. Incorporation of clinical and tumor genomic features can identify patients at risk of pathologic LN metastasis; this may guide therapy decisions before surgical resection.
Project description:BackgroundLung cancer in young patients is rare and has unique clinicopathological features. However, the molecular features of lung cancer in these patients are unclear. In this study, we aimed to describe the molecular features and outcomes of lung adenocarcinoma in patients aged ≤35 years.MethodsA total of 89 patients aged ≤35 years with pathologically diagnosed lung adenocarcinoma were retrospectively evaluated. Mutations in 59 cancer-associated genes and fusions of ALK and ROS1 were analyzed to understand the molecular features of young patients with lung adenocarcinoma. The clinicopathological characteristics and prognosis of each patient were reviewed.ResultsOf the 89 young patients, 25 (28.1%) were male, 9 (10.1%) were smokers, and the median age was 32 years (range, 18-35 years). The authors analyzed 59 genes and a total of 6 mutations and 2 fusion genes were detected. These genes were distributed among 60 patients, 12 of which had two or more mutations. ERBB2 mutations were most common (24.7%), followed by EGFR mutation (21.3%), ALK fusion (16.9%), TP53 mutation (9.0%), BRAF mutation (3.4%), PIK3CA mutation (1.1%), CTNNB1 mutation (1.1%), and ROS1 fusion (1.1%). EGFR, ERBB2, and TP53 mutations, gene abnormalities, and ALK fusions all had significant correlations with histopathological differentiation (P < 0.01). ALK fusions and EGFR mutations conferred a significantly worse prognosis than did ERBB2 mutations and tumors that contained no mutations or fusions (P < 0.01).ConclusionsThe molecular features of lung adenocarcinoma in young patients are different from those of common adenocarcinoma, and the main driver genes are closely correlated with tumor differentiation and prognosis.
Project description:PurposeTo evaluate the usefulness of surrogate biomarkers as predictors of histopathologic tumor grade and aggressiveness using radiomics data from dual-energy computed tomography (DECT), with the ultimate goal of accomplishing stratification of early-stage lung adenocarcinoma for optimal treatment.ResultsPathologic grade was divided into grades 1, 2, and 3. Multinomial logistic regression analysis revealed i-uniformity and 97.5th percentile CT attenuation value as independent significant factors to stratify grade 2 or 3 from grade 1. The AUC value calculated from leave-one-out cross-validation procedure for discriminating grades 1, 2, and 3 was 0.9307 (95% CI: 0.8514-1), 0.8610 (95% CI: 0.7547-0.9672), and 0.8394 (95% CI: 0.7045-0.9743), respectively.Materials and methodsA total of 80 patients with 91 clinically and radiologically suspected stage I or II lung adenocarcinoma were prospectively enrolled. All patients underwent DECT and F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, followed by surgery. Quantitative CT and PET imaging characteristics were evaluated using a radiomics approach. Significant features for a tumor aggressiveness prediction model were extracted and used to calculate diagnostic performance for predicting all pathologic grades.ConclusionsQuantitative radiomics values from DECT imaging metrics can help predict pathologic aggressiveness of lung adenocarcinoma.
Project description:To investigate the difference in gene expression between early-onset and late-onset lung adenocarcinoma, we performed gene expression profiling analysis using data obtained from RNA-seq of 14 fresh tumor specimens
Project description:Lymph node metastasis of lung cancer is a serious problem. Therefore, there is a need for a detailed transcriptome study of metastatic lung adenocarcinoma. The lung adenocarcinoma RNA-seq data and the corresponding clinical information available from TCGA were analyzed. Differential expression, gradient changes, and biological pathways were carried out. Potential gene(s) associated with tumor metastasis and survival were validated by Cox regression. A total of 406 and 439 differentially expressed genes were identified for lymph node metastasis and TNM stages, respectively. Of the 296 intersection genes, 112 were associated with nodal metastasis and/or staging. Only 25 of these 112 genes with gradient changes were involved in nodal metastasis, and 13 were involved in staging. Only one gene, RN7SL494P, might be involved in lung adenocarcinoma development and poor outcome. Finally, Cox regression results verified that age, pathology classification, radiotherapy and chemotherapy are all the independent prognostic factors. In particular, RN7SL494P was further verified to be an independent factor affecting lymph node metastasis and patient survival. Furthermore, we verified the RN7SL494P function using simulation data generated by mixing cell lines of the Cancer Cell Line Encyclopedia (CCLE) and obtained consistent results. Our findings suggest a potential clinical application of the RN7SL494P as a promising marker in the evaluation of patients with primary lung adenocarcinoma, not only for predicting nodal metastasis, but also for the prognosis of the outcome.
Project description:Brain metastasis (BM) is a major complication of lung adenocarcinoma (LAD). An investigation of the pathogenic mechanisms of BM, as well as the identification of appropriate molecular markers, is necessary. The aim of this study was to determine the expression patterns of microRNAs (miRNAs) in LAD with BM, and to investigate the biological role of these miRNAs during tumorigenesis. miRNA array profiles were used to identify BM-associated miRNAs. These miRNAs were independently validated in 155 LAD patients. Several in vivo and in vitro assays were performed to verify the effects of miRNAs on BM. We identified six miRNAs differentially expressed in patients with BM as compared to patients with BM. Of these, miR-4270 and miR-423-3p were further investigated. miR-4270 and miR-423-3p directly targeted MMP19 and P21, respectively, to influence cell viability, migration, and colony formation in vitro. miR-4270 downregulation and miR-423-3p upregulation was associated with an increased risk of BM in LAD patients. Thus, our results suggested that miR-4270 and miR-423-3p might play an important role in BM pathogenesis in LAD patients, and that these miRNAs might be useful prognostic and clinical treatment targets.
Project description:CLEC10A, (C-type lectin domain family 10, member A), as the member of C-type lectin receptors (CLRs), plays a vital role in modulating innate immunity and adaptive immunity and has shown great potential as an immunotherapy target for cancers. However, there is no functional research of CLEC10A in prognostic risk, immunotherapy or any other treatment of lung adenocarcinoma (LUAD). We performed bioinformatics analysis on LUAD data downloaded from TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus), and jointly analysed with online databases such as HPA, LinkedOmics, TIMER, ESTIMATE and TISIDB. We found that lower expression of CLEC10A was accompanied with worse outcomes of LUAD patients. Moreover, CLEC10A expression was significantly correlated with a variety of the tumour-infiltrating immune cells (TIICs). As a promising prognosis predictor and potential immunotherapy target, the potential influence and mechanisms of CLEC10A in LUAD deserve further exploring.
Project description:Microarray analysis of 28 brain metastasis samples from lung adenocarcinoma patients. 28 brain metastasis samples: 19 from Marc Ladanyi 9 from William L. Gerald
Project description:Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) tissues, and that IL-35 overexpression is associated with poor prognosis in PDAC patients. IL-35 has critical roles in PDAC cell extravasation and metastasis by facilitating the adhesion to endothelial cells and transendothelial extravasation. Mechanistically, IL-35 promotes ICAM1 overexpression through a GP130-STAT1 signalling pathway, which facilitates endothelial adhesion and transendothelial migration via an ICAM1-fibrinogen-ICAM1 bridge. In an orthotopic xenograft model, IL-35 promotes spontaneous pancreatic cancer metastasis in an ICAM1-dependent manner. Together, our results indicate additional functions of IL-35 in promoting PDAC metastasis through mediating ICAM1 expression.