Project description:A central aim of genome-wide association studies (GWASs) is to estimate direct genetic effects: the causal effects on an individual's phenotype of the alleles that they carry. However, estimates of direct effects can be subject to genetic and environmental confounding, and can also absorb the 'indirect' genetic effects of relatives' genotypes. Recently, an important development in controlling for these confounds has been the use of within-family GWASs, which, because of the randomness of Mendelian segregation within pedigrees, are often interpreted as producing unbiased estimates of direct effects. Here, we present a general theoretical analysis of the influence of confounding in standard population-based and within-family GWASs. We show that, contrary to common interpretation, family-based estimates of direct effects can be biased by genetic confounding. In humans, such biases will often be small per-locus, but can be compounded when effect size estimates are used in polygenic scores. We illustrate the influence of genetic confounding on population- and family-based estimates of direct effects using models of assortative mating, population stratification, and stabilizing selection on GWAS traits. We further show how family-based estimates of indirect genetic effects, based on comparisons of parentally transmitted and untransmitted alleles, can suffer substantial genetic confounding. In addition to known biases that can arise in family-based GWASs when interactions between family members are ignored, we show that biases can also arise from gene-by-environment (G×E) interactions when parental genotypes are not distributed identically across interacting environmental and genetic backgrounds. We conclude that, while family-based studies have placed GWAS estimation on a more rigorous footing, they carry subtle issues of interpretation that arise from confounding and interactions.
Project description:Meta-analysis is an increasingly popular tool for combining multiple genome-wide association studies in a single analysis to identify associations with small effect sizes. The effect sizes between studies in a meta-analysis may differ and these differences, or heterogeneity, can be caused by many factors. If heterogeneity is observed in the results of a meta-analysis, interpreting the cause of heterogeneity is important because the correct interpretation can lead to a better understanding of the disease and a more effective design of a replication study. However, interpreting heterogeneous results is difficult. The standard approach of examining the association p-values of the studies does not effectively predict if the effect exists in each study. In this paper, we propose a framework facilitating the interpretation of the results of a meta-analysis. Our framework is based on a new statistic representing the posterior probability that the effect exists in each study, which is estimated utilizing cross-study information. Simulations and application to the real data show that our framework can effectively segregate the studies predicted to have an effect, the studies predicted to not have an effect, and the ambiguous studies that are underpowered. In addition to helping interpretation, the new framework also allows us to develop a new association testing procedure taking into account the existence of effect.
Project description:Cohort studies typically sample unrelated individuals from a population, although family members of index cases may also be recruited to investigate shared familial risk factors. Recruitment of family members may be incomplete or ancillary to the main cohort, resulting in a mixed sample of independent family units, including unrelated singletons and multiplex families. Multiple methods are available to perform genome-wide association (GWA) analysis of binary or continuous traits in families, but it is unclear whether methods known to perform well on ascertained pedigrees, sibships, or trios are appropriate in analysis of a mixed unrelated cohort and family sample. We present simulation studies based on Multi-Ethnic Study of Atherosclerosis (MESA) pedigree structures to compare the performance of several popular methods of GWA analysis for both quantitative and dichotomous traits in cohort studies. We evaluate approaches suitable for analysis of families, and combined the best performing methods with population-based samples either by meta-analysis, or by pooled analysis of family- and population-based samples (mega-analysis), comparing type 1 error and power. We further assess practical considerations, such as availability of software and ability to incorporate covariates in statistical modeling, and demonstrate our recommended approaches through quantitative and binary trait analysis of HDL cholesterol (HDL-C) in 2,553 MESA family- and population-based African-American samples. Our results suggest linear modeling approaches that accommodate family-induced phenotypic correlation (e.g., variance-component model for quantitative traits or generalized estimating equations for dichotomous traits) perform best in the context of combined family- and population-based cohort GWAS.
Project description:Recently, Steen et al proposed a novel two-stage approach for family-based genome-wide association studies. In the first stage, a test based on between-family information is used to rank SNPs according to their P-values or conditional power of the test. In the second stage, the R most promising SNPs are tested using a family-based association test. We call this two-stage approach top R method. Ionita-Laza et al proposed an exponential weighting method within a two-stage framework. In the second stage of this approach, instead of testing top R SNPs, it tests all SNPs and weights the P-values of association test according to the information of the first stage. However, both of the top R and exponential weighting methods only use the information from the first stage to rank SNPs. It seems that the two methods do not use information from the first stage efficiently. Furthermore, it may be unreasonable for the exponential weighting method to use the same weight for all SNPs within a group when only one or a few SNPs are related with a disease. In this article, we propose a data-driven weighting scheme within a two-stage framework. In this method, we use the information from the first stage to determine a SNP-specific weight for each SNP. We use simulation studies to evaluate the performance of our method. The simulation results showed that our proposed method is consistently more powerful than the top R method and the exponential weighting method, regardless of the LD structure, population structure, and family structure.
Project description:Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to estimate a more powerful and accurate correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size.
Project description:Given the availability of genotype and phenotype data collected in family members, the question arises which estimator ensures the most optimal use of such data in genome-wide scans. Using simulations, we compared the Unweighted Least Squares (ULS) and Maximum Likelihood (ML) procedures. The former is implemented in Plink and uses a sandwich correction to correct the standard errors for model misspecification of ignoring the clustering. The latter is implemented by fast linear mixed procedures and models explicitly the familial resemblance. However, as it commits to a background model limited to additive genetic and unshared environmental effects, it employs a misspecified model for traits with a shared environmental component. We considered the performance of the two procedures in terms of type I and type II error rates, with correct and incorrect model specification in ML. For traits characterized by moderate to large familial resemblance, using an ML procedure with a correctly specified model for the conditional familial covariance matrix should be the strategy of choice. The potential loss in power encountered by the sandwich corrected ULS procedure does not outweigh its computational convenience. Furthermore, the ML procedure was quite robust under model misspecification in the simulated settings and appreciably more powerful than the sandwich corrected ULS procedure. However, to correct for the effects of model misspecification in ML in circumstances other than those considered here, we propose to use a sandwich correction. We show that the sandwich correction can be formulated in terms of the fast ML method.
Project description:Genome-wide association studies (GWAS) that draw samples from multiple studies with a mixture of relationship structures are becoming more common. Analytical methods exist for using mixed-sample data, but few methods have been proposed for the analysis of genotype-by-environment (G×E) interactions. Using GWAS data from a study of sarcoidosis susceptibility genes in related and unrelated African Americans, we explored the current analytic options for genotype association testing in studies using both unrelated and family-based designs. We propose a novel method-generalized least squares (GLX)-to estimate both SNP and G×E interaction effects for categorical environmental covariates and compared this method to generalized estimating equations (GEE), logistic regression, the Cochran-Armitage trend test, and the WQLS and MQLS methods. We used simulation to demonstrate that the GLX method reduces type I error under a variety of pedigree structures. We also demonstrate its superior power to detect SNP effects while offering computational advantages and comparable power to detect G×E interactions versus GEE. Using this method, we found two novel SNPs that demonstrate a significant genome-wide interaction with insecticide exposure-rs10499003 and rs7745248, located in the intronic and 3' UTR regions of the FUT9 gene on chromosome 6q16.1.
Project description:MotivationPermutation-based significance thresholds have been shown to be a robust alternative to classical Bonferroni significance thresholds in genome-wide association studies (GWAS) for skewed phenotype distributions. The recently published method permGWAS introduced a batch-wise approach to efficiently compute permutation-based GWAS. However, running multiple univariate tests in parallel leads to many repetitive computations and increased computational resources. More importantly, traditional permutation methods that permute only the phenotype break the underlying population structure.ResultsWe propose permGWAS2, an improved method that does not break the population structure during permutations and uses an elegant block matrix decomposition to optimize computations, thereby reducing redundancies. We show on synthetic data that this improved approach yields a lower false discovery rate for skewed phenotype distributions compared to the previous version and the commonly used Bonferroni correction. In addition, we re-analyze a dataset covering phenotypic variation in 86 traits in a population of 615 wild sunflowers (Helianthus annuus L.). This led to the identification of dozens of novel associations with putatively adaptive traits, and removed several likely false-positive associations with limited biological support.Availability and implementationpermGWAS2 is open-source and publicly available on GitHub for download: https://github.com/grimmlab/permGWAS.
Project description:Family based association studies are employed less often than case-control designs in the search for disease-predisposing genes. The optimal statistical genetic approach for complex pedigrees is unclear when evaluating both common and rare variants. We examined the empirical power and type I error rates of 2 common approaches, the measured genotype approach and family-based association testing, through simulations from a set of multigenerational pedigrees. Overall, these results suggest that much larger sample sizes will be required for family-based studies and that power was better using MGA compared to FBAT. Taking into account computational time and potential bias, a 2-step strategy is recommended with FBAT followed by MGA.
Project description:For genome-wide association studies in family-based designs, we propose a new, universally applicable approach. The new test statistic exploits all available information about the association, while, by virtue of its design, it maintains the same robustness against population admixture as traditional family-based approaches that are based exclusively on the within-family information. The approach is suitable for the analysis of almost any trait type, e.g. binary, continuous, time-to-onset, multivariate, etc., and combinations of those. We use simulation studies to verify all theoretically derived properties of the approach, estimate its power, and compare it with other standard approaches. We illustrate the practical implications of the new analysis method by an application to a lung-function phenotype, forced expiratory volume in one second (FEV1) in 4 genome-wide association studies.