Unknown

Dataset Information

0

Title evaluation of FluSight influenza forecasting in the 2021-22 and 2022-23 seasons with a new target laboratory-confirmed influenza hospitalizations.


ABSTRACT: Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. For the 2021-22 and 2022-23 influenza seasons, 26 forecasting teams provided national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one-to-four weeks ahead. Forecast skill is evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperform the baseline model across forecast weeks and locations in 2021-22 and 12 out of 18 models in 2022-23. Averaging across all forecast targets, the FluSight ensemble is the 2nd most accurate model measured by WIS in 2021-22 and the 5th most accurate in the 2022-23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degrade over longer forecast horizons. In this work we demonstrate that while the FluSight ensemble was a robust predictor, even ensembles face challenges during periods of rapid change.

SUBMITTER: Mathis SM 

PROVIDER: S-EPMC11282251 | biostudies-literature | 2024 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Title evaluation of FluSight influenza forecasting in the 2021-22 and 2022-23 seasons with a new target laboratory-confirmed influenza hospitalizations.

Mathis Sarabeth M SM   Webber Alexander E AE   León Tomás M TM   Murray Erin L EL   Sun Monica M   White Lauren A LA   Brooks Logan C LC   Green Alden A   Hu Addison J AJ   Rosenfeld Roni R   Shemetov Dmitry D   Tibshirani Ryan J RJ   McDonald Daniel J DJ   Kandula Sasikiran S   Pei Sen S   Yaari Rami R   Yamana Teresa K TK   Shaman Jeffrey J   Agarwal Pulak P   Balusu Srikar S   Gururajan Gautham G   Kamarthi Harshavardhan H   Prakash B Aditya BA   Raman Rishi R   Zhao Zhiyuan Z   Rodríguez Alexander A   Meiyappan Akilan A   Omar Shalina S   Baccam Prasith P   Gurung Heidi L HL   Suchoski Brad T BT   Stage Steve A SA   Ajelli Marco M   Kummer Allisandra G AG   Litvinova Maria M   Ventura Paulo C PC   Wadsworth Spencer S   Niemi Jarad J   Carcelen Erica E   Hill Alison L AL   Loo Sara L SL   McKee Clifton D CD   Sato Koji K   Smith Claire C   Truelove Shaun S   Jung Sung-Mok SM   Lemaitre Joseph C JC   Lessler Justin J   McAndrew Thomas T   Ye Wenxuan W   Bosse Nikos N   Hlavacek William S WS   Lin Yen Ting YT   Mallela Abhishek A   Gibson Graham C GC   Chen Ye Y   Lamm Shelby M SM   Lee Jaechoul J   Posner Richard G RG   Perofsky Amanda C AC   Viboud Cécile C   Clemente Leonardo L   Lu Fred F   Meyer Austin G AG   Santillana Mauricio M   Chinazzi Matteo M   Davis Jessica T JT   Mu Kunpeng K   Pastore Y Piontti Ana A   Vespignani Alessandro A   Xiong Xinyue X   Ben-Nun Michal M   Riley Pete P   Turtle James J   Hulme-Lowe Chis C   Jessa Shakeel S   Nagraj V P VP   Turner Stephen D SD   Williams Desiree D   Basu Avranil A   Drake John M JM   Fox Spencer J SJ   Suez Ehsan E   Cojocaru Monica G MG   Thommes Edward W EW   Cramer Estee Y EY   Gerding Aaron A   Stark Ariane A   Ray Evan L EL   Reich Nicholas G NG   Shandross Li L   Wattanachit Nutcha N   Wang Yijin Y   Zorn Martha W MW   Aawar Majd Al MA   Srivastava Ajitesh A   Meyers Lauren A LA   Adiga Aniruddha A   Hurt Benjamin B   Kaur Gursharn G   Lewis Bryan L BL   Marathe Madhav M   Venkatramanan Srinivasan S   Butler Patrick P   Farabow Andrew A   Ramakrishnan Naren N   Muralidhar Nikhil N   Reed Carrie C   Biggerstaff Matthew M   Borchering Rebecca K RK  

Nature communications 20240726 1


Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. For the 2021-22 and 2022-23 influenza seasons, 26 forecasting teams provided national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one-to-four weeks ahead. Forecast skill is evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperform the baseline model across forecast weeks and loc  ...[more]

Similar Datasets

| S-EPMC10760285 | biostudies-literature
| S-EPMC10534462 | biostudies-literature
| S-EPMC5693284 | biostudies-literature
| S-EPMC10986648 | biostudies-literature
| S-EPMC10563870 | biostudies-literature
| S-EPMC9334552 | biostudies-literature
| S-EPMC10186845 | biostudies-literature
| S-EPMC5988548 | biostudies-literature
| S-EPMC3903906 | biostudies-other
| S-EPMC8664442 | biostudies-literature