Unknown

Dataset Information

0

A lumen-tunable triangular DNA nanopore for molecular sensing and cross-membrane transport.


ABSTRACT: Synthetic membrane nanopores made of DNA are promising systems to sense and control molecular transport in biosensing, sequencing, and synthetic cells. Lumen-tunable nanopore like the natural ion channels and systematically increasing the lumen size have become long-standing desires in developing nanopores. Here, we design a triangular DNA nanopore with a large tunable lumen. It allows in-situ transition from expanded state to contracted state without changing its stable triangular shape, and vice versa, in which specific DNA bindings as stimuli mechanically pinch and release the three corners of the triangular frame. Transmission electron microscopy images and molecular dynamics simulations illustrate the stable architectures and the high shape retention. Single-channel current recordings and fluorescence influx studies demonstrate the low-noise repeatable readouts and the controllable cross-membrane macromolecular transport. We envision that the proposed DNA nanopores could offer powerful tools in molecular sensing, drug delivery, and the creation of synthetic cells.

SUBMITTER: Liu X 

PROVIDER: S-EPMC11341817 | biostudies-literature | 2024 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

A lumen-tunable triangular DNA nanopore for molecular sensing and cross-membrane transport.

Liu Xiaoming X   Liu Fengyu F   Chhabra Hemani H   Maffeo Christopher C   Chen Zhuo Z   Huang Qiang Q   Aksimentiev Aleksei A   Arai Tatsuo T  

Nature communications 20240822 1


Synthetic membrane nanopores made of DNA are promising systems to sense and control molecular transport in biosensing, sequencing, and synthetic cells. Lumen-tunable nanopore like the natural ion channels and systematically increasing the lumen size have become long-standing desires in developing nanopores. Here, we design a triangular DNA nanopore with a large tunable lumen. It allows in-situ transition from expanded state to contracted state without changing its stable triangular shape, and vi  ...[more]

Similar Datasets

| S-EPMC10446168 | biostudies-literature
| S-EPMC6841704 | biostudies-literature
| S-EPMC7310959 | biostudies-literature
| S-EPMC6658736 | biostudies-literature
| S-EPMC5106009 | biostudies-literature
| S-EPMC4754698 | biostudies-other
| S-EPMC9852088 | biostudies-literature
| S-EPMC6906287 | biostudies-literature
| S-EPMC4479991 | biostudies-literature
| S-EPMC3696130 | biostudies-literature