Calcium-dependent protein kinases play an essential role in a plant defence response.
Ontology highlight
ABSTRACT: Calcium-dependent protein kinases (CDPKs) comprise a large family of serine/threonine kinases in plants and protozoans. We isolated two related CDPK cDNAs (NtCDPK2 and NtCDPK3) from Nicotiana tabacum. These CDPK transcripts are elevated after race-specific defence elicitation and hypo-osmotic stress. Transiently expressed myc-epitope-tagged NtCDPK2 in Nicotiana benthamiana and N.tabacum leaves showed a rapid transient interconversion to an activated form after elicitation and hypo-osmotic stress. The Avr9 race-specific elicitor caused a more pronounced and sustained response. This transition is due to phosphorylation of the CDPK. Immuno complex kinase assays with epitope-tagged NtCDPK2 showed that stress-induced phosphorylation and interconversion of NtCDPK2 correlates with an increase in enzymatic activity. The function of NtCDPK2 in plant defence was investigated by employing virus-induced gene silencing (VIGS) in N.benthamiana. CDPK-silenced plants showed a reduced and delayed hypersensitive response after race-specific elicitation in a gene-for-gene interaction, and lacked an accompanying wilting phenotype. Silencing correlated with loss of CDPK mRNA, whereas mRNA accumulation of mitogen-activated protein kinase WIPK remained unaltered.
SUBMITTER: Romeis T
PROVIDER: S-EPMC125278 | biostudies-literature | 2001 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA