Ontology highlight
ABSTRACT: Background
In Drosophila melanogaster, a pre-mRNA splicing hierarchy controls sexual identity and ultimately leads to sex-specific Doublesex (DSX) transcription factor isoforms. The male-specific DSXM represses genes involved in female development and activates genes involved in male development. Spatial and temporal control of dsx during embryogenesis is not well documented.Results
Here we show that DSX(M) is specifically expressed in subsets of male somatic gonad cells during embryogenesis. Following testis formation, germ cells remain in contact with DSX(M)-expressing cells, including hub cells and premeiotic somatic cyst cells that surround germ cells during spermatogenesis in larval and adult testes.Conclusion
We show that dsx is transcriptionally regulated in addition to being regulated at the pre-mRNA splicing level by the sex determination hierarchy. The dsx locus is spatially controlled by somatic gonad identity. The continuous expression of DSX(M) in cells contacting the germline suggests an ongoing short-range influence of the somatic sex determination pathway on germ cell development.
SUBMITTER: Hempel LU
PROVIDER: S-EPMC2148063 | biostudies-literature | 2007 Oct
REPOSITORIES: biostudies-literature
Hempel Leonie U LU Oliver Brian B
BMC developmental biology 20071012
<h4>Background</h4>In Drosophila melanogaster, a pre-mRNA splicing hierarchy controls sexual identity and ultimately leads to sex-specific Doublesex (DSX) transcription factor isoforms. The male-specific DSXM represses genes involved in female development and activates genes involved in male development. Spatial and temporal control of dsx during embryogenesis is not well documented.<h4>Results</h4>Here we show that DSX(M) is specifically expressed in subsets of male somatic gonad cells during e ...[more]