Unknown

Dataset Information

0

Mef2 activity levels differentially affect gene expression during Drosophila muscle development.


ABSTRACT: Cell differentiation is controlled by key transcription factors, and a major question is how they orchestrate cell-type-specific genetic programs. Muscle differentiation is a well studied paradigm in which the conserved Mef2 transcription factor plays a pivotal role. Recent genomic studies have identified a large number of mef2-regulated target genes with distinct temporal expression profiles during Drosophila myogenesis. However, the question remains as to how a single transcription factor can control such diverse patterns of gene expression. In this study we used a strategy combining genomics and developmental genetics to address this issue in vivo during Drosophila muscle development. We found that groups of mef2-regulated genes respond differently to changes in mef2 activity levels: some require higher levels for their expression than others. Furthermore, this differential requirement correlates with when the gene is first expressed during the muscle differentiation program. Genes that require higher levels are activated later. These results implicate mef2 in the temporal regulation of muscle gene expression, and, consistent with this, we show that changes in mef2 activity levels can alter the start of gene expression in a predictable manner. Together these results indicate that Mef2 is not an all-or-none regulator; rather, its action is more subtle, and levels of its activity are important in the differential expression of muscle genes. This suggests a route by which mef2 can orchestrate the muscle differentiation program and contribute to the stringent regulation of gene expression during myogenesis.

SUBMITTER: Elgar SJ 

PROVIDER: S-EPMC2242723 | biostudies-literature | 2008 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

mef2 activity levels differentially affect gene expression during Drosophila muscle development.

Elgar Stuart J SJ   Han Jun J   Taylor Michael V MV  

Proceedings of the National Academy of Sciences of the United States of America 20080115 3


Cell differentiation is controlled by key transcription factors, and a major question is how they orchestrate cell-type-specific genetic programs. Muscle differentiation is a well studied paradigm in which the conserved Mef2 transcription factor plays a pivotal role. Recent genomic studies have identified a large number of mef2-regulated target genes with distinct temporal expression profiles during Drosophila myogenesis. However, the question remains as to how a single transcription factor can  ...[more]

Similar Datasets

2007-12-31 | GSE9889 | GEO
2008-06-17 | E-GEOD-9889 | biostudies-arrayexpress
| S-EPMC3436111 | biostudies-literature
| S-EPMC4172597 | biostudies-literature
| S-EPMC2528879 | biostudies-literature
2009-11-09 | E-TABM-649 | biostudies-arrayexpress
| S-EPMC7433001 | biostudies-literature
| S-EPMC6176937 | biostudies-literature
2006-06-06 | E-TABM-56 | biostudies-arrayexpress
| S-EPMC4976255 | biostudies-literature