Frog albumin is expressed in skin and characterized as a novel potent trypsin inhibitor.
Ontology highlight
ABSTRACT: A novel potent trypsin inhibitor was purified and characterized from frog Bombina maxima skin. A full-length cDNA encoding the protein was obtained from a cDNA library constructed from the skin. Sequence analysis established that the protein actually comprises three conserved albumin domains. B.maxima serum albumin was subsequently purified, and its coding cDNA was further obtained by PCR-based cloning from the frog liver. Only two amino acid variations were found in the albumin sequences from the skin and the serum. However, the skin protein is distinct from the serum protein by binding of a haem b (0.95 mol/mol protein). Different from bovine serum albumin, B. maxima albumin potently inhibited trypsin. It bound tightly with trypsin in a 1:1 molar ratio. The equilibrium dissociation constants (KD) obtained for the skin and the serum proteins were 1.92 x 10(-9) M and 1.55 x 10(-9) M, respectively. B. maxima albumin formed a noncovalent complex with trypsin through an exposed loop formed by a disulfide bond (Cys53-Cys62), which comprises the scissile bond Arg58(P1)-His59(P1'). No inhibitory effects on thrombin, chymotrypsin, elastase, and subtilisin were observed under the assay conditions. Immunohistochemical study showed that B. maxima albumin is widely distributed around the membranes of epithelial layer cells and within the stratum spongiosum of dermis in the skin, suggesting that it plays important roles in skin physiological functions, such as water economy, metabolite exchange, and osmoregulation.
SUBMITTER: Zhang YX
PROVIDER: S-EPMC2253475 | biostudies-literature | 2005 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA