Unknown

Dataset Information

0

Nuclear polyglutamine-containing protein aggregates as active proteolytic centers.


ABSTRACT: Protein aggregates and nuclear inclusions (NIs) containing components of the ubiquitin-proteasome system (UPS), expanded polyglutamine (polyQ) proteins, and transcriptional coactivators characterize cellular responses to stress and are hallmarks of neurodegenerative diseases. The biological function of polyQ-containing aggregates is unknown. To analyze proteasomal activity within such aggregates, we present a nanoparticle (NP)-based method that enables controlled induction of sodium dodecyl sulfate-resistant inclusions of endogenous nuclear proteins while normal regulatory mechanisms remain in place. Consistent with the idea that the UPS maintains quality control, inhibition of proteasomal proteolysis promotes extra large protein aggregates (1.4-2 mum), whereas formation of NP-induced NIs is found to be inversely correlated to proteasome activation. We show that global proteasomal proteolysis increases in NP-treated nuclei and, on the local level, a subpopulation of NIs overlaps with focal domains of proteasome-dependent protein degradation. These results suggest that inclusions in the nucleus constitute active proteolysis modules that may serve to concentrate and decompose damaged, malfolded, or misplaced proteins.

SUBMITTER: Chen M 

PROVIDER: S-EPMC2265588 | biostudies-literature | 2008 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nuclear polyglutamine-containing protein aggregates as active proteolytic centers.

Chen Min M   Singer Lena L   Scharf Andrea A   von Mikecz Anna A  

The Journal of cell biology 20080218 4


Protein aggregates and nuclear inclusions (NIs) containing components of the ubiquitin-proteasome system (UPS), expanded polyglutamine (polyQ) proteins, and transcriptional coactivators characterize cellular responses to stress and are hallmarks of neurodegenerative diseases. The biological function of polyQ-containing aggregates is unknown. To analyze proteasomal activity within such aggregates, we present a nanoparticle (NP)-based method that enables controlled induction of sodium dodecyl sulf  ...[more]

Similar Datasets

| S-EPMC151354 | biostudies-literature
| S-EPMC1201602 | biostudies-literature
| S-EPMC6264036 | biostudies-literature
| S-EPMC3436181 | biostudies-literature
| S-EPMC8599886 | biostudies-literature
| S-EPMC5986704 | biostudies-literature
| S-EPMC3368771 | biostudies-literature
| S-EPMC2670137 | biostudies-literature
| S-EPMC2665101 | biostudies-literature
| S-EPMC166409 | biostudies-literature