Unknown

Dataset Information

0

Dimethyl sulfoxide at 2.5% (v/v) alters the structural cooperativity and unfolding mechanism of dimeric bacterial NAD+ synthetase.


ABSTRACT: Dimethyl sulfoxide (DMSO) is commonly used as a cosolvent to improve the aqueous solubility of small organic compounds. Its use in a screen to identify novel inhibitors of the enzyme NAD(+) synthetase led to this investigation of its potential effects on the structure and stability of this 60-kD homodimeric enzyme. Although no effects are observed on the enzyme's catalytic activity, as low as 2.5% (v/v) DMSO led to demonstrable changes in the stability of the dimer and its unfolding mechanism. In the absence of DMSO, the dimer behaves hydrodynamically as a single ideal species, as determined by equilibrium analytical ultracentrifugation, and thermally unfolds according to a two-state dissociative mechanism, based on analysis by differential scanning calorimetry (DSC). In the presence of 2.5% (v/v) DMSO, an equilibrium between the dimer and monomer is now detectable with a measured dimer association constant, K(a), equal to 5.6 x 10(6)/M. DSC curve analysis is consistent with this finding. The data are best fit to a three-state sequential unfolding mechanism, most likely representing folded dimer <==> folded monomer <==> unfolded monomer. The unusually large change in the relative stabilities of dimer and monomer, e.g., the association equilibrium shifts from an infinitely large K(a) down to approximately 10(6)/M, in the presence of relatively low cosolvent concentration is surprising in view of the significant buried surface area at the dimer interface, roughly 20% of the surface area of each monomer is buried. A hypothetical structural mechanism to explain this effect is presented.

SUBMITTER: Yang ZW 

PROVIDER: S-EPMC2286739 | biostudies-literature | 2004 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dimethyl sulfoxide at 2.5% (v/v) alters the structural cooperativity and unfolding mechanism of dimeric bacterial NAD+ synthetase.

Yang Zhengrong W ZW   Tendian Susan W SW   Carson W Michael WM   Brouillette Wayne J WJ   Delucas Lawrence J LJ   Brouillette Christie G CG  

Protein science : a publication of the Protein Society 20040301 3


Dimethyl sulfoxide (DMSO) is commonly used as a cosolvent to improve the aqueous solubility of small organic compounds. Its use in a screen to identify novel inhibitors of the enzyme NAD(+) synthetase led to this investigation of its potential effects on the structure and stability of this 60-kD homodimeric enzyme. Although no effects are observed on the enzyme's catalytic activity, as low as 2.5% (v/v) DMSO led to demonstrable changes in the stability of the dimer and its unfolding mechanism. I  ...[more]

Similar Datasets

| S-EPMC6843525 | biostudies-literature
| S-EPMC2666046 | biostudies-literature
| S-EPMC3772426 | biostudies-literature
| S-EPMC3051735 | biostudies-literature
| S-EPMC3977580 | biostudies-other
| S-EPMC1751415 | biostudies-literature
| S-EPMC3247552 | biostudies-literature
| S-EPMC3120471 | biostudies-literature
| S-EPMC3238690 | biostudies-literature
2011-10-05 | E-GEOD-32593 | biostudies-arrayexpress